From Dynamic Simulation to Optimal Design and Control of Adsorption Energy Systems | Agenda Bookshop Skip to content
Please note that books with a 10-20 working days delivery time may not arrive before Christmas.
Please note that books with a 10-20 working days delivery time may not arrive before Christmas.
A01=Uwe Baur
Age Group_Uncategorized
Age Group_Uncategorized
Author_Uwe Baur
automatic-update
Category1=Non-Fiction
Category=TGB
COP=Germany
Delivery_Delivery within 10-20 working days
Language_English
Language_German
PA=Available
Price_€50 to €100
PS=Active
softlaunch

From Dynamic Simulation to Optimal Design and Control of Adsorption Energy Systems

English, German

By (author): Uwe Baur

Worldwide heating and cooling demand will rise significantly over the next decades. Adsorption energy systems, namely adsorption chillers and heat pumps, have the potential to provide parts of this demand environmentally friendly by employing solar heat or waste heat.

Designing adsorption energy systems is challenging due to the following reasons: (1) intrinsic dynamics, (2) multi-objectiveness, (3) large variety in design parameters, (4) strong influence of control, and (5) a large impact of input parameters such as temperatures. In many studies, these effects have been investigated separately by conducting sensitivity analyses. To explore also the interactions between design, control, and input parameters, a simultaneous optimisation approach is presented and exemplified in this thesis.

Key to simultaneous optimisation are fast simulation models which capture the effects of all optimisation parameters. To quickly model new advanced adsorption energy systems, an object-oriented, dynamic-model library is developed in the programming language Modelica.

To conduct a simultaneous optimisation of design and control, a multi-objective optimal control problem is formulated. This optimal control problem includes the system dynamics which are captured in the dynamic process model. Additionally, point and path constraints are formulated, ensuring cyclic steady state. The multiobjectiveness is taken care of by employing the constraint method. The resulting single-objective optimal control problem is solved by the efficient multiple shooting algorithm MUSCOD II.

The developed optimisation framework is used to rigorously analyse the interaction between adsorber-bed design, component sizing, thermodynamic cycle, and control. The framework is also used to investigate the effect of the objective function and of varying input temperatures on design and control. The multi-objective optimisation results are used to discuss the trade-off between efficiency and power density by employing the Pareto frontier.

Finally, simulation models and optimisation framework are used to set up a model predictive control (MPC). The MPC allows to identify and adjust the optimal control parameters based on varying input conditions. Based on these results, new heat-flow based heuristics are developed, which lead to a Pareto-optimal operation of one-bed adsorption chillers. Both MPC and heuristics are applied experimentally to a one-bed chiller.

See more
Current price €52.24
Original price €54.99
Save 5%
A01=Uwe BaurAge Group_UncategorizedAuthor_Uwe Baurautomatic-updateCategory1=Non-FictionCategory=TGBCOP=GermanyDelivery_Delivery within 10-20 working daysLanguage_EnglishLanguage_GermanPA=AvailablePrice_€50 to €100PS=Activesoftlaunch
Delivery/Collection within 10-20 working days
Product Details
  • Weight: 236g
  • Dimensions: 148 x 210mm
  • Publication Date: 08 Mar 2018
  • Publisher: Verlag G. Mainz
  • Publication City/Country: Germany
  • Language: English, German
  • ISBN13: 9783958862166

About Uwe Baur

Uwe Baur 1939 geb. in Duisburg

Customer Reviews

Be the first to write a review
0%
(0)
0%
(0)
0%
(0)
0%
(0)
0%
(0)
We use cookies to ensure that we give you the best experience on our website. If you continue we'll assume that you are understand this. Learn more
Accept