Regular price €65.99
A01=Edward Oakes
A01=Max Pumperla
A01=Richard Liaw
Age Group_Uncategorized
Age Group_Uncategorized
Author_Edward Oakes
Author_Max Pumperla
Author_Richard Liaw
automatic-update
Category1=Non-Fiction
Category=UMX
Category=UNC
Category=UNF
COP=United States
Delivery_Delivery within 10-20 working days
eq_computing
eq_isMigrated=2
eq_non-fiction
Language_English
PA=Available
Price_€50 to €100
PS=Active
Python Data Science Big Data distributed computing reinforcement learning hyperparameter optimization model serving and deployment
softlaunch

Product details

  • ISBN 9781098117221
  • Weight: 440g
  • Dimensions: 178 x 233mm
  • Publication Date: 03 Mar 2023
  • Publisher: O'Reilly Media
  • Publication City/Country: US
  • Product Form: Paperback
  • Language: English
Delivery/Collection within 10-20 working days

Our Delivery Time Frames Explained
2-4 Working Days: Available in-stock

10-20 Working Days
: On Backorder

Will Deliver When Available
: On Pre-Order or Reprinting

We ship your order once all items have arrived at our warehouse and are processed. Need those 2-4 day shipping items sooner? Just place a separate order for them!

Get started with Ray, the open source distributed computing framework that simplifies the process of scaling compute-intensive Python workloads. With this practical book, Python programmers, data engineers, and data scientists will learn how to leverage Ray locally and spin up compute clusters. You'll be able to use Ray to structure and run machine learning programs at scale. Authors Max Pumperla, Edward Oakes, and Richard Liaw show you how to build machine learning applications with Ray. You'll understand how Ray fits into the current landscape of machine learning tools and discover how Ray continues to integrate ever more tightly with these tools. Distributed computation is hard, but by using Ray you'll find it easy to get started. Learn how to build your first distributed applications with Ray Core Conduct hyperparameter optimization with Ray Tune Use the Ray RLlib library for reinforcement learning Manage distributed training with the Ray Train library Use Ray to perform data processing with Ray Datasets Learn how work with Ray Clusters and serve models with Ray Serve Build end-to-end machine learning applications with Ray AIR
Max Pumperla is a data science professor and software engineer located in Hamburg, Germany. He's an active open source contributor, maintainer of several Python packages, and author of machine learning books. He currently works as software engineer at Anyscale. As head of product research at Pathmind Inc. he was developing reinforcement learning solutions for industrial applications at scale using Ray RLlib, Serve and Tune. Edward Oakes (ed.nmi.oakes@gmail.com), writing chapters 7 (data) & 9 (serving): "Edward is a software engineer and team lead at Anyscale, where he leads the development of Ray Serve and is one of the top open source contributors to Ray. Prior to Anyscale, he was a graduate student in the EECS department at UC Berkeley." RIchard Liaw (rliaw@berkeley.edu), writing chapters 6 (training) & 8 (clusters): Richard Liaw is a software engineer at Anyscale, working on open source tools for distributed machine learning. He is on leave from the PhD program at the Computer Science Department at UC Berkeley, advised by Joseph Gonzalez, Ion Stoica, and Ken Goldberg.