Model-Based Reinforcement Learning

Regular price €115.99
Regular price €116.99 Sale Sale price €115.99
A01=Jun Liu
A01=Milad Farsi
Age Group_Uncategorized
Age Group_Uncategorized
Author_Jun Liu
Author_Milad Farsi
automatic-update
B09=Maria Domenica Di Benedetto
best demonstrated practices
Category1=Non-Fiction
Category=TG
Category=TJ
Category=UYQM
change control
chemical characterization
chemical compatibility assessment
COP=United States
Delivery_Delivery within 10-20 working days
drug delivery systems
eq_computing
eq_isMigrated=2
eq_non-fiction
eq_tech-engineering
extractable
extractable and leachable correlation
international standards and guidelines
Language_English
Leachable
manufacturing components and systems
medical devices
PA=Not available (reason unspecified)
patient and user safety
pharmaceutical drug product packaging
Price_€100 and above
product lifecycle
PS=Active
regulatory and compendial compliance
softlaunch
toxicological safety risk assessment

Product details

  • ISBN 9781119808572
  • Weight: 631g
  • Publication Date: 09 Dec 2022
  • Publisher: John Wiley & Sons Inc
  • Publication City/Country: US
  • Product Form: Hardback
  • Language: English
Delivery/Collection within 10-20 working days

Our Delivery Time Frames Explained
2-4 Working Days: Available in-stock

10-20 Working Days: On Backorder

Will Deliver When Available: On Pre-Order or Reprinting

We ship your order once all items have arrived at our warehouse and are processed. Need those 2-4 day shipping items sooner? Just place a separate order for them!

Model-Based Reinforcement Learning

Explore a comprehensive and practical approach to reinforcement learning

Reinforcement learning is an essential paradigm of machine learning, wherein an intelligent agent performs actions that ensure optimal behavior from devices. While this paradigm of machine learning has gained tremendous success and popularity in recent years, previous scholarship has focused either on theory—optimal control and dynamic programming – or on algorithms—most of which are simulation-based.

Model-Based Reinforcement Learning provides a model-based framework to bridge these two aspects, thereby creating a holistic treatment of the topic of model-based online learning control. In doing so, the authors seek to develop a model-based framework for data-driven control that bridges the topics of systems identification from data, model-based reinforcement learning, and optimal control, as well as the applications of each. This new technique for assessing classical results will allow for a more efficient reinforcement learning system. At its heart, this book is focused on providing an end-to-end framework—from design to application—of a more tractable model-based reinforcement learning technique.

Model-Based Reinforcement Learning readers will also find:

  • A useful textbook to use in graduate courses on data-driven and learning-based control that emphasizes modeling and control of dynamical systems from data
  • Detailed comparisons of the impact of different techniques, such as basic linear quadratic controller, learning-based model predictive control, model-free reinforcement learning, and structured online learning
  • Applications and case studies on ground vehicles with nonholonomic dynamics and another on quadrator helicopters
  • An online, Python-based toolbox that accompanies the contents covered in the book, as well as the necessary code and data

Model-Based Reinforcement Learning is a useful reference for senior undergraduate students, graduate students, research assistants, professors, process control engineers, and roboticists.

Milad Farsi received the B.S. degree in Electrical Engineering (Electronics) from the University of Tabriz in 2010. He obtained his M.S. degree also in Electrical Engineering (Control Systems) from the Sahand University of Technology in 2013. Moreover, he gained industrial experience as a Control System Engineer between 2012 and 2016. Later, he acquired the Ph.D. degree in Applied Mathematics from the University of Waterloo, Canada, in 2022, and he is currently a Postdoctoral Fellow at the same institution. His research interests include control systems, reinforcement learning, and their applications in robotics and power electronics.

Jun Liu received the Ph.D. degree in Applied Mathematics from the University of Waterloo, Canada, in 2010. He is currently an Associate Professor of Applied Mathematics and a Canada Research Chair in Hybrid Systems and Control at the University of Waterloo, Canada, where he directs the Hybrid Systems Laboratory. From 2012 to 2015, he was a Lecturer in Control and Systems Engineering at the University of Sheffield. During 2011 and 2012, he was a Postdoctoral Scholar in Control and Dynamical Systems at the California Institute of Technology. His main research interests are in the theory and applications of hybrid systems and control, including rigorous computational methods for control design with applications in cyber-physical systems and robotics.