Boundaries and Hulls of Euclidean Graphs
Product details
- ISBN 9780367657178
- Weight: 312g
- Dimensions: 156 x 234mm
- Publication Date: 30 Sep 2020
- Publisher: Taylor & Francis Ltd
- Publication City/Country: GB
- Product Form: Paperback
- Language: English
Our Delivery Time Frames Explained
2-4 Working Days: Available in-stock
10-20 Working Days: On Backorder
Will Deliver When Available: On Pre-Order or Reprinting
We ship your order once all items have arrived at our warehouse and are processed. Need those 2-4 day shipping items sooner? Just place a separate order for them!
Boundaries and Hulls of Euclidean Graphs: From Theory to Practice presents concepts and algorithms for finding convex, concave and polygon hulls of Euclidean graphs. It also includes some implementations, determining and comparing their complexities. Since the implementation is application-dependent, either centralized or distributed, some basic concepts of the centralized and distributed versions are reviewed. Theoreticians will find a presentation of different algorithms together with an evaluation of their complexity and their utilities, as well as their field of application. Practitioners will find some practical and real-world situations in which the presented algorithms can be used.
Ahcène Bounceur is an associate professor of computer science at Lab-STICC laboratory (CNRS 6285), University of Brest, France. His current research activities are focused on: tools for parallel and physical simulation of WSNs dedicated to Smart-cities and IoT, distributed algorithms and sampling methods for Big Data mining.
Madani Bezoui is an assistant professor of operations research at the University of Boumerdes, Algeria. His research interests include: combinatorial algorithms and optimization, multi-objective optimization, portfolio selection, Big Data and IoT.
Reinhardt Euler is a professor of computer science at Lab-STICC laboratory (CNRS 6285), University of Brest, France. His research interests include: combinatorial algorithms and optimization, graph theory, and the efficient solution of large-scale, real-life problem instances.