Product details
- ISBN 9781138485440
- Weight: 826g
- Dimensions: 191 x 235mm
- Publication Date: 23 Mar 2018
- Publisher: Taylor & Francis Ltd
- Publication City/Country: GB
- Product Form: Hardback
- Language: English
Our Delivery Time Frames Explained
2-4 Working Days: Available in-stock
10-20 Working Days: On Backorder
Will Deliver When Available: On Pre-Order or Reprinting
We ship your order once all items have arrived at our warehouse and are processed. Need those 2-4 day shipping items sooner? Just place a separate order for them!
How can computer modeling and simulation tools be used to understand and analyze common situations and everyday problems? Readers will find here an easy-to-follow, enjoyable introduction for anyone even with little background training. Examples are incorporated throughout to stimulate interest and engage the reader.
Build the necessary skillsets with operating systems, editing, languages, commands, and visualization.
Obtain hands-on examples from sports, accidents, and disease to problems of heat transfer, fluid flow, waves, and groundwater flow.
Includes discussion of parallel computing and graphics processing units.
This introductory, practical guide is suitable for students at any level up to professionals looking to use modeling and simulation to help solve basic to more advanced problems.
Michael W. Roth, PhD, serves as Dean of the School of STEM and Business at Hawkeye Community College in Waterloo, Iowa. He was most recently Chair for three years at Northern Kentucky University's Department of Physics, Geology and Engineering Technology, and holds several awards for teaching excellence.
Michael W. Roth, PhD, serves as Dean of the School of STEM and Business at Hawkeye Community College in Waterloo, Iowa. Prior to that he has held faculty positions at a variety of community colleges and universities in Colorado, New Mexico, Texas, Iowa and was most recently Chair for three years at Northern Kentucky University's Department of Physics, Geology and Engineering Technology. He has a passion for teaching and holds several awards for teaching excellence across all levels of undergraduate study, and has participated in course and program development and assessment. He has involved a large and diverse group of students in his computational physics modeling and simulation–based research program, and has published numerous articles and presented at conferences with them in the fields of condensed matter surface physics, bullet impact, groundwater flow, snow remediation, solar system formation, and planetary impact. He is a collector of antique science books and laboratory equipment.