Machine Learning for Business Analytics

Regular price €119.99
Regular price €120.99 Sale Sale price €119.99
A/B testing
A01=Amit V. Deokar
A01=Galit Shmueli
A01=Nitin R. Patel
A01=Peter C. Bruce
Age Group_Uncategorized
Age Group_Uncategorized
artificial intelligence
Author_Amit V. Deokar
Author_Galit Shmueli
Author_Nitin R. Patel
Author_Peter C. Bruce
automatic-update
Category1=Non-Fiction
Category=TJ
Category=UNF
COP=United States
customer behavioral patterns
Data analytics
Data mining
data segmentation
data visualization
deep learning
Delivery_Delivery within 10-20 working days
eq_computing
eq_isMigrated=2
eq_non-fiction
eq_tech-engineering
Language_English
machine learning
network analysis
neural networks
PA=Available
prediction
predictive modeling
Price_€100 and above
PS=Active
recommender systems
reinforcement learning
responsible data science
softlaunch
statistical learning
text mining

Product details

  • ISBN 9781119828792
  • Weight: 1270g
  • Dimensions: 185 x 259mm
  • Publication Date: 20 Mar 2023
  • Publisher: John Wiley & Sons Inc
  • Publication City/Country: US
  • Product Form: Hardback
  • Language: English
Delivery/Collection within 10-20 working days

Our Delivery Time Frames Explained
2-4 Working Days: Available in-stock

10-20 Working Days
: On Backorder

Will Deliver When Available
: On Pre-Order or Reprinting

We ship your order once all items have arrived at our warehouse and are processed. Need those 2-4 day shipping items sooner? Just place a separate order for them!

Machine Learning for Business Analytics

Machine learning—also known as data mining or data analytics—is a fundamental part of data science. It is used by organizations in a wide variety of arenas to turn raw data into actionable information.

Machine Learning for Business Analytics: Concepts, Techniques and Applications in RapidMiner provides a comprehensive introduction and an overview of this methodology. This best-selling textbook covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, rule mining, recommendations, clustering, text mining, experimentation and network analytics. Along with hands-on exercises and real-life case studies, it also discusses managerial and ethical issues for responsible use of machine learning techniques.

This is the seventh edition of Machine Learning for Business Analytics, and the first using RapidMiner software. This edition also includes:

  • A new co-author, Amit Deokar, who brings experience teaching business analytics courses using RapidMiner
  • Integrated use of RapidMiner, an open-source machine learning platform that has become commercially popular in recent years
  • An expanded chapter focused on discussion of deep learning techniques
  • A new chapter on experimental feedback techniques including A/B testing, uplift modeling, and reinforcement learning
  • A new chapter on responsible data science
  • Updates and new material based on feedback from instructors teaching MBA, Masters in Business Analytics and related programs, undergraduate, diploma and executive courses, and from their students
  • A full chapter devoted to relevant case studies with more than a dozen cases demonstrating applications for the machine learning techniques
  • End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented
  • A companion website with more than two dozen data sets, and instructor materials including exercise solutions, slides, and case solutions

This textbook is an ideal resource for upper-level undergraduate and graduate level courses in data science, predictive analytics, and business analytics. It is also an excellent reference for analysts, researchers, and data science practitioners working with quantitative data in management, finance, marketing, operations management, information systems, computer science, and information technology.

Galit Shmueli, PhD, is Distinguished Professor at National Tsing Hua University’s Institute of Service Science, College of Technology Management. She has designed and instructed business analytics courses since 2004 at University of Maryland, Statistics.com, The Indian School of Business, and National Tsing Hua University, Taiwan.

Peter C. Bruce, is Founder of the Institute for Statistics Education at Statistics.com, and Chief Learning Officer at Elder Research, Inc.

Amit V. Deokar, PhD, is Associate Dean of Undergraduate Programs and an Associate Professor of Management Information Systems at the Manning School of Business at University of Massachusetts Lowell. Since 2006, he has developed and taught courses in business analytics, with expertise in using the RapidMiner platform. He is an Association for Information Systems Distinguished Member Cum Laude.

Nitin R. Patel, PhD, is cofounder and lead researcher at Cytel Inc. He was also a co-founder of Tata Consultancy Services. A Fellow of the American Statistical Association, Dr. Patel has served as a visiting professor at the Massachusetts Institute of Technology and at Harvard University. He is a Fellow of the Computer Society of India and was a professor at the Indian Institute of Management, Ahmedabad, for 15 years.