Practical Data Mining Techniques and Applications
Product details
- ISBN 9781032486772
- Weight: 453g
- Dimensions: 156 x 234mm
- Publication Date: 29 Nov 2024
- Publisher: Taylor & Francis Ltd
- Publication City/Country: GB
- Product Form: Paperback
- Language: English
Our Delivery Time Frames Explained
2-4 Working Days: Available in-stock
10-20 Working Days: On Backorder
Will Deliver When Available: On Pre-Order or Reprinting
We ship your order once all items have arrived at our warehouse and are processed. Need those 2-4 day shipping items sooner? Just place a separate order for them!
Data mining techniques and algorithms are extensively used to build real-world applications. A practical approach can be applied to data mining techniques to build applications. Once deployed, an application enables the developers to work on the users’ goals and mold the algorithms with respect to users’ perspectives.
Practical Data Mining Techniques and Applications focuses on various concepts related to data mining and how these techniques can be used to develop and deploy applications. The book provides a systematic composition of fundamental concepts of data mining blended with practical applications. The aim of this book is to provide access to practical data mining applications and techniques to help readers gain an understanding of data mining in practice. Readers also learn how relevant techniques and algorithms are applied to solve problems and to provide solutions to real-world applications in different domains. This book can help academicians to extend their knowledge of the field as well as their understanding of applications based on different techniques to gain greater insight. It can also help researchers with real-world applications by diving deeper into the domain. Computing science students, application developers, and business professionals may also benefit from this examination of applied data science techniques.
By highlighting an overall picture of the field, introducing various mining techniques, and focusing on different applications and research directions using these methods, this book can motivate discussions among academics, researchers, professionals, and students to exchange and develop their views regarding the dynamic field that is data mining.