Statistical Rethinking

Regular price €93.99
A01=Richard McElreath
Adaptive Priors
Age Group_Uncategorized
Age Group_Uncategorized
Author_Richard McElreath
automatic-update
Bayesian course
Bayesian Data Analysis
Bayesian probability
Brain Size
Category1=Non-Fiction
Category=JMB
Category=KCH
Category=KCHS
Category=PBT
COP=United Kingdom
Data Frame
Delivery_Delivery within 10-20 working days
directed acyclic graph approach
Divergent Transitions
eq_business-finance-law
eq_isMigrated=2
eq_non-fiction
eq_society-politics
Flat Priors
Gamma Poisson Model
Gaussian process models
generalized linear multilevel models
GLM
Grid Approximation
instrumental variables
Kl Divergence
Language_English
Log Gdp
Markov chain Monte Carlo
maximum entropy
MCMC
measurement error
Milk Energy
Missing Values
model-based statistics
Multilevel Models
Multivariate Linear Models
Non-centered Parameterization
PA=Available
Posterior Distribution
Posterior Predictions
Posterior Predictive Distribution
Predictor Variables
Price_€50 to €100
Prior Predictive Distribution
PS=Active
Quadratic Approximation
rethinking R package
social relations models
softlaunch
statistical inference in the natural and social sciences
statistical modeling
statistical rethinking
Terrain Ruggedness
Varying Intercepts
Waffle Houses

Product details

  • ISBN 9780367139919
  • Weight: 1432g
  • Dimensions: 178 x 254mm
  • Publication Date: 16 Mar 2020
  • Publisher: Taylor & Francis Ltd
  • Publication City/Country: GB
  • Product Form: Hardback
  • Language: English
Delivery/Collection within 10-20 working days

Our Delivery Time Frames Explained
2-4 Working Days: Available in-stock

10-20 Working Days
: On Backorder

Will Deliver When Available
: On Pre-Order or Reprinting

We ship your order once all items have arrived at our warehouse and are processed. Need those 2-4 day shipping items sooner? Just place a separate order for them!

Winner of the 2024 De Groot Prize awarded by the International Society for Bayesian Analysis (ISBA)

Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds your knowledge of and confidence in making inferences from data. Reflecting the need for scripting in today's model-based statistics, the book pushes you to perform step-by-step calculations that are usually automated. This unique computational approach ensures that you understand enough of the details to make reasonable choices and interpretations in your own modeling work.

The text presents causal inference and generalized linear multilevel models from a simple Bayesian perspective that builds on information theory and maximum entropy. The core material ranges from the basics of regression to advanced multilevel models. It also presents measurement error, missing data, and Gaussian process models for spatial and phylogenetic confounding.

The second edition emphasizes the directed acyclic graph (DAG) approach to causal inference, integrating DAGs into many examples. The new edition also contains new material on the design of prior distributions, splines, ordered categorical predictors, social relations models, cross-validation, importance sampling, instrumental variables, and Hamiltonian Monte Carlo. It ends with an entirely new chapter that goes beyond generalized linear modeling, showing how domain-specific scientific models can be built into statistical analyses.

Features

    • Integrates working code into the main text.
    • Illustrates concepts through worked data analysis examples.
    • Emphasizes understanding assumptions and how assumptions are reflected in code.
    • Offers more detailed explanations of the mathematics in optional sections.
    • Presents examples of using the dagitty R package to analyze causal graphs.

    • Provides the rethinking R package on the author's website and on GitHub.

Richard McElreath studies human evolutionary ecology and is a Director at the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany. He has published extensively on the mathematical theory and statistical analysis of social behavior, including his first book (with Robert Boyd), Mathematical Models of Social Evolution.