Demystifying Deep Learning

Regular price €119.99
Regular price €120.99 Sale Sale price €119.99
A01=Douglas J. Santry
Age Group_Uncategorized
Age Group_Uncategorized
AI
artificial intelligence
Author_Douglas J. Santry
automatic-update
Category1=Non-Fiction
Category=UYAM
Category=UYQN
classification
Convolutional Neural Networks (CNN)
COP=United States
data science
Delivery_Delivery within 10-20 working days
eq_computing
eq_isMigrated=2
eq_non-fiction
financial services
Generative AI
generative applications
image recognition
Language_English
law
machine learning
medicine
natural language process
Natural Language Processing
PA=Available
Price_€100 and above
problem solving
PS=Active
regression
science
softlaunch
supervised learning
Transformers

Product details

  • ISBN 9781394205608
  • Weight: 621g
  • Publication Date: 20 Nov 2023
  • Publisher: John Wiley & Sons Inc
  • Publication City/Country: US
  • Product Form: Hardback
  • Language: English
Delivery/Collection within 10-20 working days

Our Delivery Time Frames Explained
2-4 Working Days: Available in-stock

10-20 Working Days: On Backorder

Will Deliver When Available: On Pre-Order or Reprinting

We ship your order once all items have arrived at our warehouse and are processed. Need those 2-4 day shipping items sooner? Just place a separate order for them!

DEMYSTIFYING DEEP LEARNING

Discover how to train Deep Learning models by learning how to build real Deep Learning software libraries and verification software!

The study of Deep Learning and Artificial Neural Networks (ANN) is a significant subfield of artificial intelligence (AI) that can be found within numerous fields: medicine, law, financial services, and science, for example. Just as the robot revolution threatened blue-collar jobs in the 1970s, so now the AI revolution promises a new era of productivity for white collar jobs. Important tasks have begun being taken over by ANNs, from disease detection and prevention, to reading and supporting legal contracts, to understanding experimental data, model protein folding, and hurricane modeling. AI is everywhere—on the news, in think tanks, and occupies government policy makers all over the world —and ANNs often provide the backbone for AI.

Relying on an informal and succinct approach, Demystifying Deep Learning is a useful tool to learn the necessary steps to implement ANN algorithms by using both a software library applying neural network training and verification software. The volume offers explanations of how real ANNs work, and includes 6 practical examples that demonstrate in real code how to build ANNs and the datasets they need in their implementation, available in open-source to ensure practical usage. This approachable book follows ANN techniques that are used every day as they adapt to natural language processing, image recognition, problem solving, and generative applications. This volume is an important introduction to the field, equipping the reader for more advanced study.

Demystifying Deep Learning readers will also find:

  • A volume that emphasizes the importance of classification
  • Discussion of why ANN libraries, such as Tensor Flow and Pytorch, are written in C++ rather than Python
  • Each chapter concludes with a “Projects” page to promote students experimenting with real code
  • A supporting library of software to accompany the book at https://github.com/nom-de-guerre/RANT
  • An approachable explanation of how generative AI, such as generative adversarial networks (GAN), really work.
  • An accessible motivation and elucidation of how transformers, the basis of large language models (LLM) such as ChatGPT, work.

Demystifying Deep Learning is ideal for engineers and professionals that need to learn and understand ANNs in their work. It is also a helpful text for advanced undergraduates to get a solid grounding on the topic.

Douglas J. Santry, PhD, is a lecturer in Computer Science at the University of Kent, UK. Dr. Santry obtained his PhD from the University of Cambridge. Prior to his current position, he worked extenstively as an important figure in industry with Apple Computer Corp, NetApp and Goldman Sachs.