A01=Thomas Nield
Age Group_Uncategorized
Age Group_Uncategorized
Applied math statistics probability machine learning deep learning data science Bayes mathematics calculus partial derivatives integrals linear regression logistic regression neural networks deep learning
Author_Thomas Nield
automatic-update
Category1=Non-Fiction
Category=UYAM
Category=UYQM
COP=United States
Delivery_Delivery within 10-20 working days
eq_computing
eq_isMigrated=2
eq_non-fiction
Language_English
PA=Available
Price_€50 to €100
PS=Active
softlaunch
Product details
- ISBN 9781098102937
- Publication Date: 10 Jun 2022
- Publisher: O'Reilly Media
- Publication City/Country: US
- Product Form: Paperback
- Language: English
Delivery/Collection within 10-20 working days
Our Delivery Time Frames Explained
2-4 Working Days: Available in-stock
10-20 Working Days: On Backorder
Will Deliver When Available: On Pre-Order or Reprinting
We ship your order once all items have arrived at our warehouse and are processed. Need those 2-4 day shipping items sooner? Just place a separate order for them!
To succeed in data science you need some math proficiency. But not just any math. This common-sense guide provides a clear, plain English survey of the math you'll need in data science, including probability, statistics, hypothesis testing, linear algebra, machine learning, and calculus.
Practical examples with Python code will help you see how the math applies to the work you'll be doing, providing a clear understanding of how concepts work under the hood while connecting them to applications like machine learning. You'll get a solid foundation in the math essential for data science, but more importantly, you'll be able to use it to:
Recognize the nuances and pitfalls of probability math
Master statistics and hypothesis testing (and avoid common pitfalls)
Discover practical applications of probability, statistics, calculus, and machine learning
Intuitively understand linear algebra as a transformation of space, not just grids of numbers being multiplied and added
Perform calculus derivatives and integrals completely from scratch in Python
Apply what you've learned to machine learning, including linear regression, logistic regression, and neural networks
Thomas Nield is the founder of Nield Consulting Group as well as an instructor at O'Reilly Media and University of Southern California. He enjoys making technical content relatable and relevant to those unfamiliar or intimidated by it. Thomas regularly teaches classes on data analysis, machine learning, mathematical optimization, and practical artificial intelligence. He's authored two books, including Getting Started with SQL (O'Reilly) and Learning RxJava (Packt).
Qty: