Generative Adversarial Networks and Deep Learning
Product details
- ISBN 9781032068114
- Weight: 453g
- Dimensions: 178 x 254mm
- Publication Date: 19 Dec 2024
- Publisher: Taylor & Francis Ltd
- Publication City/Country: GB
- Product Form: Paperback
- Language: English
Our Delivery Time Frames Explained
2-4 Working Days: Available in-stock
10-20 Working Days: On Backorder
Will Deliver When Available: On Pre-Order or Reprinting
We ship your order once all items have arrived at our warehouse and are processed. Need those 2-4 day shipping items sooner? Just place a separate order for them!
This book explores how to use generative adversarial networks in a variety of applications and emphasises their substantial advancements over traditional generative models. This book's major goal is to concentrate on cutting-edge research in deep learning and generative adversarial networks, which includes creating new tools and methods for processing text, images, and audio.
A Generative Adversarial Network (GAN) is a class of machine learning framework and is the next emerging network in deep learning applications. Generative Adversarial Networks(GANs) have the feasibility to build improved models, as they can generate the sample data as per application requirements. There are various applications of GAN in science and technology, including computer vision, security, multimedia and advertisements, image generation, image translation,text-to-images synthesis, video synthesis, generating high-resolution images, drug discovery, etc.
Features:
- Presents a comprehensive guide on how to use GAN for images and videos.
- Includes case studies of Underwater Image Enhancement Using Generative Adversarial Network, Intrusion detection using GAN
- Highlights the inclusion of gaming effects using deep learning methods
- Examines the significant technological advancements in GAN and its real-world application.
- Discusses as GAN challenges and optimal solutions
The book addresses scientific aspects for a wider audience such as junior and senior engineering, undergraduate and postgraduate students, researchers, and anyone interested in the trends development and opportunities in GAN and Deep Learning.
The material in the book can serve as a reference in libraries, accreditation agencies, government agencies, and especially the academic institution of higher education intending to launch or reform their engineering curriculum