Abstraction and Infinity
★★★★★
★★★★★
Regular price
€93.99
Regular price
€94.99
Sale
Sale price
€93.99
A01=Paolo Mancosu
Age Group_Uncategorized
Age Group_Uncategorized
Author_Paolo Mancosu
automatic-update
Category1=Non-Fiction
Category=HPL
Category=PBB
Category=QDTL
COP=United Kingdom
Delivery_Delivery within 10-20 working days
eq_isMigrated=2
Language_English
PA=Available
Price_€50 to €100
PS=Active
softlaunch
Product details
- ISBN 9780198746829
- Weight: 494g
- Dimensions: 166 x 234mm
- Publication Date: 15 Dec 2016
- Publisher: Oxford University Press
- Publication City/Country: GB
- Product Form: Hardback
- Language: English
Delivery/Collection within 10-20 working days
Our Delivery Time Frames Explained
2-4 Working Days: Available in-stock
10-20 Working Days: On Backorder
Will Deliver When Available: On Pre-Order or Reprinting
We ship your order once all items have arrived at our warehouse and are processed. Need those 2-4 day shipping items sooner? Just place a separate order for them!
Paolo Mancosu provides an original investigation of historical and systematic aspects of the notions of abstraction and infinity and their interaction. A familiar way of introducing concepts in mathematics rests on so-called definitions by abstraction. An example of this is Hume's Principle, which introduces the concept of number by stating that two concepts have the same number if and only if the objects falling under each one of them can be put in one-one correspondence. This principle is at the core of neo-logicism.
In the first two chapters of the book, Mancosu provides a historical analysis of the mathematical uses and foundational discussion of definitions by abstraction up to Frege, Peano, and Russell. Chapter one shows that abstraction principles were quite widespread in the mathematical practice that preceded Frege's discussion of them and the second chapter provides the first contextual analysis of Frege's discussion of abstraction principles in section 64 of the Grundlagen. In the second part of the book, Mancosu discusses a novel approach to measuring the size of infinite sets known as the theory of numerosities and shows how this new development leads to deep mathematical, historical, and philosophical problems. The final chapter of the book explore how this theory of numerosities can be exploited to provide surprisingly novel perspectives on neo-logicism.
Paolo Mancosu is Willis S. and Marion Slusser Professor of Philosophy at the University of California at Berkeley. He is the author of numerous articles and books in logic and philosophy of mathematics. He is also the author of Inside the Zhivago Storm: The editorial adventures of Pasternak's masterpiece (Feltrinelli, Milan, 2013). During his career he has taught at Stanford, Oxford, and Yale. He has been a fellow of the Humboldt Stiftung, the Wissenschaftskolleg zu Berlin, the Institute for Advanced Study in Princeton, and the Institut d'Études Avancées in Paris. He has received grants from the Guggenheim Foundation, the NSF, and the CNRS.
Qty: