Introduction to Non-Perturbative Foundations of Quantum Field Theory

Regular price €137.99
A01=Franco Strocchi
Author_Franco Strocchi
Category1=Non-Fiction
Category=NL-PH
Category=PHM
Category=PHQ
Category=PHU
COP=United Kingdom
Discount=15
eq_isMigrated=2
eq_non-fiction
eq_science
Format=BB
Format_Hardback
HMM=247
IMPN=Oxford University Press
ISBN13=9780199671571
Language_English
NWS=158
PA=Available
PD=20130221
POP=Oxford
Price_€100 to €200
PS=Active
PUB=Oxford University Press
SMM=19
SN=International Series of Monographs on Physics
Subject=Physics
WG=694
WMM=178

Product details

  • ISBN 9780199671571
  • Format: Hardback
  • Weight: 694g
  • Dimensions: 178 x 247 x 19mm
  • Publication Date: 14 Feb 2013
  • Publisher: Oxford University Press
  • Publication City/Country: Oxford, GB
  • Product Form: Hardback
  • Language: English
Delivery/Collection within 10-20 working days

Our Delivery Time Frames Explained
2-4 Working Days: Available in-stock

10-20 Working Days: On Backorder

Will Deliver When Available: On Pre-Order or Reprinting

We ship your order once all items have arrived at our warehouse and are processed. Need those 2-4 day shipping items sooner? Just place a separate order for them!

Quantum Field Theory (QFT) has proved to be the most useful strategy for the description of elementary particle interactions and as such is regarded as a fundamental part of modern theoretical physics. In most presentations, the emphasis is on the effectiveness of the theory in producing experimentally testable predictions, which at present essentially means Perturbative QFT. However, after more than fifty years of QFT, we still are in the embarrassing situation of not knowing a single non-trivial (even non-realistic) model of QFT in 3+1 dimensions, allowing a non-perturbative control. As a reaction to these consistency problems one may take the position that they are related to our ignorance of the physics of small distances and that QFT is only an effective theory, so that radically new ideas are needed for a consistent quantum theory of relativistic interactions (in 3+1 dimensions). The book starts by discussing the conflict between locality or hyperbolicity and positivity of the energy for relativistic wave equations, which marks the origin of quantum field theory, and the mathematical problems of the perturbative expansion (canonical quantization, interaction picture, non-Fock representation, asymptotic convergence of the series etc.). The general physical principles of positivity of the energy, Poincare' covariance and locality provide a substitute for canonical quantization, qualify the non-perturbative foundation and lead to very relevant results, like the Spin-statistics theorem, TCP symmetry, a substitute for canonical quantization, non-canonical behaviour, the euclidean formulation at the basis of the functional integral approach, the non-perturbative definition of the S-matrix (LSZ, Haag-Ruelle-Buchholz theory). A characteristic feature of gauge field theories is Gauss' law constraint. It is responsible for the conflict between locality of the charged fields and positivity, it yields the superselection of the (unbroken) gauge charges, provides a non-perturbative explanation of the Higgs mechanism in the local gauges, implies the infraparticle structure of the charged particles in QED and the breaking of the Lorentz group in the charged sectors. A non-perturbative proof of the Higgs mechanism is discussed in the Coulomb gauge: the vector bosons corresponding to the broken generators are massive and their two point function dominates the Goldstone spectrum, thus excluding the occurrence of massless Goldstone bosons. The solution of the U(1) problem in QCD, the theta vacuum structure and the inevitable breaking of the chiral symmetry in each theta sector are derived solely from the topology of the gauge group, without relying on the semiclassical instanton approximation.
Franco Strocchi is Senior Research Fellow at INFN. He received his Laurea in Physics at the University of Pisa and Diploma in Physics at Scuola Normale Superiore, Pisa (1961). He has taught as Professor of Theoretical Physics at SISSA, Trieste (1983-1994), and as Professor of Theoretical Physics at Scuola Normale Superiore (1994-2009). His main research interests include the theory of quantized fields and spontaneous breaking of symmetries.