Boundary Value Problems on Time Scales, Volume II

Regular price €217.00
A01=Khaled Zennir
A01=Svetlin Georgiev
advanced differential equations
Author_Khaled Zennir
Author_Svetlin Georgiev
BVP
Category=PBKJ
Category=PHU
difference equation
Dynamic Equations
eq_bestseller
eq_isMigrated=1
eq_isMigrated=2
eq_nobargain
eq_non-fiction
eq_science
Fourth Order Boundary
functional analysis applications
Higher Order Boundary
impulsive dynamic systems
mathematical modeling science
Multi-point Boundary
nonlinear analysis
Odd
Order Boundary
ordinary differential equations
partial differential equations
qualitative theory dynamic equations
time scale calculus

Product details

  • ISBN 9781032008059
  • Weight: 612g
  • Dimensions: 156 x 234mm
  • Publication Date: 05 Nov 2021
  • Publisher: Taylor & Francis Ltd
  • Publication City/Country: GB
  • Product Form: Hardback
Delivery/Collection within 10-20 working days

Our Delivery Time Frames Explained
2-4 Working Days: Available in-stock

10-20 Working Days: On Backorder

Will Deliver When Available: On Pre-Order or Reprinting

We ship your order once all items have arrived at our warehouse and are processed. Need those 2-4 day shipping items sooner? Just place a separate order for them!

Boundary Value Problems on Time Scales, Volume II is devoted to the qualitative theory of boundary value problems on time scales. Summarizing the

most recent contributions in this area, it addresses a wide audience of specialists such as mathematicians, physicists, engineers and biologists. It can be used as

a textbook at the graduate level and as a reference book for several disciplines. The text contains two volumes, both published by Chapman & Hall/CRC Press.

Volume I presents boundary value problems for first- and second-order dynamic equations on time scales. Volume II investigates boundary value problems for

three, four, and higher-order dynamic equations on time scales. Many results to differential equations carry over easily to corresponding results

for difference equations, while other results seem to be totally different in nature. Because of these reasons, the theory of dynamic equations is an active area of

research. The time-scale calculus can be applied to any field in which dynamic processes are described by discrete or continuous time models.

The calculus of time scales has various applications involving noncontinuous domains such as certain bug populations, phytoremediation of metals, wound

healing, maximization problems in economics, and traffic problems. Boundary value problems on time scales have been extensively investigated in simulating

processes and the phenomena subject to short-time perturbations during their evolution.

The material in this book is presented in highly readable, mathematically solid format. Many practical problems are illustrated displaying a wide variety of

solution techniques.

AUTHORS

Svetlin G. Georgiev is a mathematician who has worked in various areas of the study. He currently focuses on harmonic analysis, functional analysis, partial

differential equations, ordinary differential equations, Clifford and quaternion analysis, integral equations, and dynamic calculus on time scales.

Khaled Zennir earned his PhD in mathematics in 2013 from Sidi Bel Abbès University, Algeria. In 2015, he received his highest diploma in Habilitation in

mathematics from Constantine University, Algeria. He is currently assistant professor at Qassim University in the Kingdom of Saudi Arabia. His research

interests lie in the subjects of nonlinear hyperbolic partial differential equations: global existence, blowup, and long-time behavior.

AUTHORS

Svetlin G. Georgiev is a mathematician who has worked in various areas of mathematics. He currently focuses on harmonic analysis, functional analysis, partial differential equations, ordinary differential equations, Clifford and quaternion analysis, integral equations, and dynamic calculus on time scales.

Khaled Zennir earned his PhD in mathematics in 2013 from Sidi Bel Abbès University, Algeria. In 2015, he received his highest diploma in Habilitation in mathematics from Constantine University, Algeria. He is currently assistant professor at Qassim University in the Kingdom of Saudi Arabia. His research interests lie in the subjects of nonlinear hyperbolic partial differential equations: global existence, blowup, and long time behavior.