Data Science and Risk Analytics in Finance and Insurance

Regular price €82.99
A01=Haipeng Xing
A01=Tze Leung Lai
advanced risk analytics techniques
Age Group_Uncategorized
Age Group_Uncategorized
Author_Haipeng Xing
Author_Tze Leung Lai
automatic-update
Category1=Non-Fiction
Category=KFF
Category=PBT
Category=PBWH
COP=United States
credibility theory
Delivery_Pre-order
eq_bestseller
eq_business-finance-law
eq_isMigrated=2
eq_nobargain
eq_non-fiction
financial derivatives pricing
FinTech
Insurance Risk
Language_English
Markov Decision Process
Monte Carlo
PA=Not yet available
Price_€50 to €100
PS=Active
quantitative risk modelling
rare event analytics
reinforcement learning algorithms
Risk Management
sequential analysis
SN=Chapman & Hall/CRC Financial Mathematics Series
softlaunch
Supervised Learning
Unsupervised Learning

Product details

  • ISBN 9781439839485
  • Weight: 860g
  • Dimensions: 156 x 234mm
  • Publication Date: 02 Oct 2024
  • Publisher: Taylor & Francis Inc
  • Publication City/Country: US
  • Product Form: Hardback
  • Language: English
Delivery/Collection within 10-20 working days

Our Delivery Time Frames Explained
2-4 Working Days: Available in-stock

10-20 Working Days: On Backorder

Will Deliver When Available: On Pre-Order or Reprinting

We ship your order once all items have arrived at our warehouse and are processed. Need those 2-4 day shipping items sooner? Just place a separate order for them!

This book presents statistics and data science methods for risk analytics in quantitative finance and insurance. Part I covers the background, financial models, and data analytical methods for market risk, credit risk, and operational risk in financial instruments, as well as models of risk premium and insolvency in insurance contracts. Part II provides an overview of machine learning (including supervised, unsupervised, and reinforcement learning), Monte Carlo simulation, and sequential analysis techniques for risk analytics. In Part III, the book offers a non-technical introduction to four key areas in financial technology: artificial intelligence, blockchain, cloud computing, and big data analytics.

Key Features:

  • Provides a comprehensive and in-depth overview of data science methods for financial and insurance risks.
  • Unravels bandits, Markov decision processes, reinforcement learning, and their interconnections.
  • Promotes sequential surveillance and predictive analytics for abrupt changes in risk factors.
  • Introduces the ABCDs of FinTech: Artificial intelligence, blockchain, cloud computing, and big data analytics.
  • Includes supplements and exercises to facilitate deeper comprehension.

Tze Leung Lai is the Ray Lyman Wilbur Professor and Professor of Statistics at Stanford University. He received the COPSS Presidents' Award in 1983. He has published extensively on sequential statistical analysis and a wide range of applications in the biomedical sciences, engineering, and finance.

Haipeng Xing is a Professor of Applied Mathematics and Statistics at State University of New York, Stony Brook. His research interests include sequential statistical methods and its applications, econometrics, quantitative finance, and recursive methods in macroeconomics.