Home
»
Deep Learning
A01=Adam Gibson
A01=Josh Patterson
AI artificial intelligence deep learning
analytics
Author_Adam Gibson
Author_Josh Patterson
big data
Category=UYQM
data science
eq_computing
eq_isMigrated=1
eq_isMigrated=2
eq_non-fiction
hadoop
machine learning
Product details
- ISBN 9781491914250
- Weight: 666g
- Dimensions: 150 x 250mm
- Publication Date: 25 Jun 2017
- Publisher: O'Reilly Media
- Publication City/Country: US
- Product Form: Paperback
Delivery/Collection within 10-20 working days
Our Delivery Time Frames Explained
2-4 Working Days: Available in-stock
10-20 Working Days: On Backorder
Will Deliver When Available: On Pre-Order or Reprinting
We ship your order once all items have arrived at our warehouse and are processed. Need those 2-4 day shipping items sooner? Just place a separate order for them!
Although interest in machine learning has reached a high point, lofty expectations often scuttle projects before they get very far. How can machine learning—especially deep neural networks—make a real difference in your organization? This hands-on guide not only provides the most practical information available on the subject, but also helps you get started building efficient deep learning networks.
Authors Adam Gibson and Josh Patterson provide theory on deep learning before introducing their open-source Deeplearning4j (DL4J) library for developing production-class workflows. Through real-world examples, you’ll learn methods and strategies for training deep network architectures and running deep learning workflows on Spark and Hadoop with DL4J.
Dive into machine learning concepts in general, as well as deep learning in particular
Understand how deep networks evolved from neural network fundamentals
Explore the major deep network architectures, including Convolutional and Recurrent
Learn how to map specific deep networks to the right problem
Walk through the fundamentals of tuning general neural networks and specific deep network architectures
Use vectorization techniques for different data types with DataVec, DL4J’s workflow tool
Learn how to use DL4J natively on Spark and Hadoop
Adam Gibson is a deep--learning specialist based in San Francisco who works with Fortune 500 companies, hedge funds, PR firms and startup accelerators to create their machine--learning projects. Adam has a strong track record helping companies handle and interpret big real-time data. Adam has been a computer nerd since he was 13, and actively contributes to the open--source community through deeplearning4j.org. Josh Patterson currently runs a consultancy in the big data machine learning / deep learning space. Previously Josh worked as a Principal Solutions Architect at Cloudera and as a machine learning / distributed systems engineer at the Tennessee Valley Authority where he brought Hadoop into the smart grid with the openPDC project. Josh has a Masters in Computer Science from the University of Tennessee at Chattanooga where he did published research on mesh networks (tinyOS) and social insect optimization algorithms. Josh has over 17 years in software development and is very active in the open source space contributing to projects such as deeplearning4j, Apache Mahout, Metronome, IterativeReduce, openPDC, and JMotif.
Qty: