Graph Edge Coloring
Product details
- ISBN 9781118091371
- Weight: 635g
- Dimensions: 163 x 236mm
- Publication Date: 02 Mar 2012
- Publisher: John Wiley & Sons Inc
- Publication City/Country: US
- Product Form: Hardback
- Language: English
Our Delivery Time Frames Explained
2-4 Working Days: Available in-stock
10-20 Working Days: On Backorder
Will Deliver When Available: On Pre-Order or Reprinting
We ship your order once all items have arrived at our warehouse and are processed. Need those 2-4 day shipping items sooner? Just place a separate order for them!
Reviewing recent advances in the Edge Coloring Problem, Graph Edge Coloring: Vizing's Theorem and Goldberg's Conjecture provides an overview of the current state of the science, explaining the interconnections among the results obtained from important graph theory studies. The authors introduce many new improved proofs of known results to identify and point to possible solutions for open problems in edge coloring.
The book begins with an introduction to graph theory and the concept of edge coloring. Subsequent chapters explore important topics such as:
-
Use of Tashkinov trees to obtain an asymptotic positive solution to Goldberg's conjecture
-
Application of Vizing fans to obtain both known and new results
-
Kierstead paths as an alternative to Vizing fans
-
Classification problem of simple graphs
-
Generalized edge coloring in which a color may appear more than once at a vertex
This book also features first-time English translations of two groundbreaking papers written by Vadim Vizing on an estimate of the chromatic class of a p-graph and the critical graphs within a given chromatic class.
Written by leading experts who have reinvigorated research in the field, Graph Edge Coloring is an excellent book for mathematics, optimization, and computer science courses at the graduate level. The book also serves as a valuable reference for researchers interested in discrete mathematics, graph theory, operations research, theoretical computer science, and combinatorial optimization.
Diego Scheide, PhD, is a Postdoctoral Researcher in the Department of Mathematics at Simon Fraser University, Canada.
Bjarne Toft, PhD, is Associate Professor in the Department of Mathematics and Computer Science at the University of Southern Denmark.
Lene M. Favrholdt, PhD, is Associate Professor in the Department of Mathematics and Computer Science at the University of Southern Denmark.