Matrix Analysis for Statistics

Regular price €118.99
A01=James R. Schott
Age Group_Uncategorized
Age Group_Uncategorized
antieigenvalues
antieigenvectors
applied statistics
Author_James R. Schott
automatic-update
Category1=Non-Fiction
Category=PBT
COP=United States
Delivery_Delivery within 10-20 working days
eq_isMigrated=2
inequalities
Language_English
linear models
matrix analysis theory
matrix methods
multivariate analysis
oblique projections
PA=Available
Price_€100 and above
PS=Active
SN=Wiley Series in Probability and Statistics
softlaunch

Product details

  • ISBN 9781119092483
  • Weight: 880g
  • Dimensions: 163 x 241mm
  • Publication Date: 05 Aug 2016
  • Publisher: John Wiley & Sons Inc
  • Publication City/Country: US
  • Product Form: Hardback
  • Language: English
Delivery/Collection within 10-20 working days

Our Delivery Time Frames Explained
2-4 Working Days: Available in-stock

10-20 Working Days: On Backorder

Will Deliver When Available: On Pre-Order or Reprinting

We ship your order once all items have arrived at our warehouse and are processed. Need those 2-4 day shipping items sooner? Just place a separate order for them!

An up-to-date version of the complete, self-contained introduction to matrix analysis theory and practice

Providing accessible and in-depth coverage of the most common matrix methods now used in statistical applications, Matrix Analysis for Statistics, Third Edition features an easy-to-follow theorem/proof format. Featuring smooth transitions between topical coverage, the author carefully justifies the step-by-step process of the most common matrix methods now used in statistical applications, including eigenvalues and eigenvectors; the Moore-Penrose inverse; matrix differentiation; and the distribution of quadratic forms.

An ideal introduction to matrix analysis theory and practice, Matrix Analysis for Statistics, Third Edition features:

• New chapter or section coverage on inequalities, oblique projections, and antieigenvalues and antieigenvectors

• Additional problems and chapter-end practice exercises at the end of each chapter

• Extensive examples that are familiar and easy to understand

• Self-contained chapters for flexibility in topic choice

• Applications of matrix methods in least squares regression and the analyses of mean vectors and covariance matrices

Matrix Analysis for Statistics, Third Edition is an ideal textbook for upper-undergraduate and graduate-level courses on matrix methods, multivariate analysis, and linear models. The book is also an excellent reference for research professionals in applied statistics.

James R. Schott, PhD, is Professor in the Department of Statistics at the University of Central Florida. He has published numerous journal articles in the area of multivariate analysis. Dr. Schott’s research interests include multivariate analysis, analysis of covariance and correlation matrices, and dimensionality reduction techniques.

James R. Schott, PhD, is Professor in the Department of Statistics at the University of Central Florida. He has published numerous journal articles in the area of multivariate analysis. Dr. Schott’s research interests include multivariate analysis, analysis of covariance and correlation matrices, and dimensionality reduction techniques.