Regular price €131.99
A01=Alexander R. Its
A01=Andrei A. Kapaev
A01=Athanassios S. Fokas
A01=Victor Yu. Novokshenov
Age Group_Uncategorized
Age Group_Uncategorized
Author_Alexander R. Its
Author_Andrei A. Kapaev
Author_Athanassios S. Fokas
Author_Victor Yu. Novokshenov
automatic-update
Category1=Non-Fiction
Category=PBKJ
COP=United States
Delivery_Pre-order
eq_isMigrated=2
Language_English
PA=Not yet available
Price_€100 and above
PS=Forthcoming
softlaunch

Product details

  • ISBN 9781470475567
  • Publication Date: 31 Oct 2006
  • Publisher: American Mathematical Society
  • Publication City/Country: US
  • Product Form: Paperback
  • Language: English
Delivery/Collection within 10-20 working days

Our Delivery Time Frames Explained
2-4 Working Days: Available in-stock

10-20 Working Days: On Backorder

Will Deliver When Available: On Pre-Order or Reprinting

We ship your order once all items have arrived at our warehouse and are processed. Need those 2-4 day shipping items sooner? Just place a separate order for them!

At the turn of the twentieth century, the French mathematician Paul Painleve and his students classified second order nonlinear ordinary differential equations with the property that the location of possible branch points and essential singularities of their solutions does not depend on initial conditions. It turned out that there are only six such equations (up to natural equivalence), which later became known as Painleve I-VI. Although these equations were initially obtained answering a strictly mathematical question, they appeared later in an astonishing (and growing) range of applications, including, e.g., statistical physics, fluid mechanics, random matrices, and orthogonal polynomials. Actually, it is now becoming clear that the Painleve transcendents (i.e., the solutions of the Painleve equations) play the same role in nonlinear mathematical physics that the classical special functions, such as Airy and Bessel functions, play in linear physics. The explicit formulas relating the asymptotic behaviour of the classical special functions at different critical points play a crucial role in the applications of these functions. It is shown in this book that even though the six Painleve equations are nonlinear, it is still possible, using a new technique called the Riemann-Hilbert formalism, to obtain analogous explicit formulas for the Painleve transcendents. This striking fact, apparently unknown to Painleve and his contemporaries, is the key ingredient for the remarkable applicability of these ``nonlinear special functions''. The book describes in detail the Riemann-Hilbert method and emphasizes its close connection to classical monodromy theory of linear equations as well as to modern theory of integrable systems. In addition, the book contains an ample collection of material concerning the asymptotics of the Painleve functions and their various applications, which makes it a good reference source for everyone working in the theory and applications of Painleve equations and related areas.
Athanassios S. Fokas, Cambridge University, United Kingdom.

Alexander R. Its, Indiana University-Purdue University Indianapolis, IN.

Andrei A. Kapaev, and Victor Yu. Novokshenov, Russian Academy of Sciences, Ufa, Russia.