Practical Machine Learning – A New Look at Anomaly Detection

Regular price €22.99
A01=Ellen Friedman
A01=Ted Dunning
Age Group_Uncategorized
Age Group_Uncategorized
Author_Ellen Friedman
Author_Ted Dunning
automatic-update
Category1=Non-Fiction
Category=UMB
Category=UNC
Category=UTX
Category=UY
COP=United States
Delivery_Delivery within 10-20 working days
eq_bestseller
eq_computing
eq_isMigrated=2
eq_nobargain
eq_non-fiction
Language_English
machine learning algorithms anomaly detection anomaly detector apache mahout
PA=Available
Price_€20 to €50
PS=Active
softlaunch

Product details

  • ISBN 9781491911600
  • Weight: 112g
  • Dimensions: 152 x 227mm
  • Publication Date: 30 Sep 2014
  • Publisher: O'Reilly Media
  • Publication City/Country: US
  • Product Form: Paperback
  • Language: English
Delivery/Collection within 10-20 working days

Our Delivery Time Frames Explained
2-4 Working Days: Available in-stock

10-20 Working Days: On Backorder

Will Deliver When Available: On Pre-Order or Reprinting

We ship your order once all items have arrived at our warehouse and are processed. Need those 2-4 day shipping items sooner? Just place a separate order for them!

Anomaly detection is the detective work of machine learning: finding the unusual, catching the fraud, discovering strange activity in large and complex datasets. But, unlike Sherlock Holmes, you may not know what the puzzle is, much less what "suspects" you're looking for. This O'Reilly report uses practical examples to explain how the underlying concepts of anomaly detection work. From banking security to natural sciences, medicine, and marketing, anomaly detection has many useful applications in this age of big data. And the search for anomalies will intensify once the Internet of Things spawns even more new types of data. The concepts described in this report will help you tackle anomaly detection in your own project. Use probabilistic models to predict what's normal and contrast that to what you observe Set an adaptive threshold to determine which data falls outside of the normal range, using the t-digest algorithm Establish normal fluctuations in complex systems and signals (such as an EKG) with a more adaptive probablistic model Use historical data to discover anomalies in sporadic event streams, such as web traffic Learn how to use deviations in expected behavior to trigger fraud alerts
Ted Dunning is Chief Applications Architect at MapR Technologies and committer and PMC member of the Apache Mahout, Apache ZooKeeper, and Apache Drill projects and mentor for these Apache projects: Spark, Storm, Stratosphere, and Datafu. He contributed to Mahout clustering, classification, and matrix decomposition algorithms and helped expand the new version of Mahout Math library. Ted was the chief architect behind the MusicMatch (now Yahoo Music) and Veoh recommendation systems, built fraud-detection systems for ID Analytics (LifeLock), and has issued 24 patents to date. Ted has a PhD in computing science from University of Sheffield. When he's not doing data science, he plays guitar and mandolin. Ellen Friedman is a consultant and commentator, currently writing mainly about big data topics. She is a committer for the Apache Mahout project and a contributor to the Apache Drill project. With a PhD in Biochemistry, she has years of experience as a research scientist and has written about a variety of technical topics including molecular biology, nontraditional inheritance, and oceanography. Ellen is also co-author of a book of magic-themed cartoons, A Rabbit Under the Hat. Ellen is on Twitter at @Ellen_Friedman.