Home
»
Practical Statistics for Data Scientists
Practical Statistics for Data Scientists
★★★★★
★★★★★
Regular price
€76.99
A01=Andrew Bruce
A01=Peter Bruce
A01=Peter Gedeck
Age Group_Uncategorized
Age Group_Uncategorized
Author_Andrew Bruce
Author_Peter Bruce
Author_Peter Gedeck
automatic-update
Category1=Non-Fiction
Category=UN
COP=United States
Data science statistics machine learning predictive modeling artificial intelligence classification clustering data scientist
Delivery_Delivery within 10-20 working days
eq_bestseller
eq_computing
eq_isMigrated=2
eq_nobargain
eq_non-fiction
Inc
Language_English
PA=Available
Price_€50 to €100
PS=Active
softlaunch
USA
Product details
- ISBN 9781492072942
- Dimensions: 178 x 233mm
- Publication Date: 29 Jun 2020
- Publisher: O'Reilly Media
- Publication City/Country: US
- Product Form: Paperback
- Language: English
Delivery/Collection within 10-20 working days
Our Delivery Time Frames Explained
2-4 Working Days: Available in-stock
10-20 Working Days: On Backorder
Will Deliver When Available: On Pre-Order or Reprinting
We ship your order once all items have arrived at our warehouse and are processed. Need those 2-4 day shipping items sooner? Just place a separate order for them!
Statistical methods are a key part of data science, yet few data scientists have formal statistical training. Courses and books on basic statistics rarely cover the topic from a data science perspective. The second edition of this popular guide adds comprehensive examples in Python, provides practical guidance on applying statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what’s important and what’s not.
Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R or Python programming languages and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format.
With this book, you’ll learn:
Why exploratory data analysis is a key preliminary step in data science
How random sampling can reduce bias and yield a higher-quality dataset, even with big data
How the principles of experimental design yield definitive answers to questions
How to use regression to estimate outcomes and detect anomalies
Key classification techniques for predicting which categories a record belongs to
Statistical machine learning methods that "learn" from data
Unsupervised learning methods for extracting meaning from unlabeled data
Peter Bruce is the Founder and Chief Academic Officer of the Institute for Statistics Education at Statistics.com, which offers about 80 courses in statistics and analytics, roughly half of which are aimed at data scientists. He has authored or co-authored several books in statistics and analytics, and he earned his Bachelor's degree at Princeton, and Masters degrees at Harvard and the University of Maryland. Andrew Bruce, Principal Research Scientist at Amazon, has over 30 years of experience in statistics and data science in academia, government and business. The co-author of Applied Wavelet Analysis with S-PLUS, he earned his bachelor's degree at Princeton, and PhD in statistics at the University of Washington. eter Gedeck, Senior Data Scientist at Collaborative Drug Discovery, specializes in the development of machine learning algorithms to predict biological and physicochemical properties of drug candidates. Co-author of Data Mining for Business Analytics, he earned PhD's in Chemistry from the University of Erlangen-Nurnberg in Germany and Mathematics from Fernuniversitat Hagen, Germany
Qty:
