Python Data Science Handbook

Regular price €76.99
A01=Jake Vanderplas
Age Group_Uncategorized
Age Group_Uncategorized
Author_Jake Vanderplas
automatic-update
Category1=Non-Fiction
Category=GPS
Category=PD
Category=PDM
Category=UM
Category=UMX
Category=UNA
Category=UYQM
Category=UYZF
Category=UYZM
COP=United States
Delivery_Delivery within 10-20 working days
eq_computing
eq_isMigrated=2
eq_non-fiction
eq_science
Language_English
PA=Available
Price_€50 to €100
PS=Active
python scipy numpy scientific computing data analysis pydata ipython matplotlib scikit-learn sympy pandas scaling
softlaunch

Product details

  • ISBN 9781098121228
  • Weight: 925g
  • Dimensions: 178 x 233mm
  • Publication Date: 31 Dec 2022
  • Publisher: O'Reilly Media
  • Publication City/Country: US
  • Product Form: Paperback
  • Language: English
Delivery/Collection within 10-20 working days

Our Delivery Time Frames Explained
2-4 Working Days: Available in-stock

10-20 Working Days: On Backorder

Will Deliver When Available: On Pre-Order or Reprinting

We ship your order once all items have arrived at our warehouse and are processed. Need those 2-4 day shipping items sooner? Just place a separate order for them!

Python is a first-class tool for many researchers, primarily because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the new edition of Python Data Science Handbook do you get them all—IPython, NumPy, pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find the second edition of this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you'll learn how: IPython and Jupyter provide computational environments for scientists using Python NumPy includes the ndarray for efficient storage and manipulation of dense data arrays Pandas contains the DataFrame for efficient storage and manipulation of labeled/columnar data Matplotlib includes capabilities for a flexible range of data visualizations Scikit-learn helps you build efficient and clean Python implementations of the most important and established machine learning algorithms
Jake VanderPlas is a software engineer at Google Research, working on tools that support data-intensive research. He maintains a technical blog, Pythonic Perambulations, to share tutorials and opinions related to statistics, open software, and scientific computing in Python. He creates and develops Python tools for use in data-intensive science, including packages like Scikit-Learn, SciPy, AstroPy, Altair, JAX, and many others. He participates in the broader data science community, developing and presenting talks and tutorials on scientific computing topics at various conferences in the data science world.