Smoothing of Multivariate Data

Regular price €171.06
A01=Jussi Sakari Klemelä
algorithmic methods
anisotropic kernel estimators
Author_Jussi Sakari Klemelä
Category=PBT
eq_isMigrated=1
eq_isMigrated=2
minimization estimators
multivariate adaptive histograms
multivariate density estimators
nonparametric statistics
R software
smoothing and analysis of data
statistical visualization
visualizing statistics
wavelet estimators

Product details

  • ISBN 9780470290880
  • Weight: 989g
  • Dimensions: 163 x 244mm
  • Publication Date: 11 Sep 2009
  • Publisher: John Wiley & Sons Inc
  • Publication City/Country: US
  • Product Form: Hardback
Delivery/Collection within 10-20 working days

Our Delivery Time Frames Explained
2-4 Working Days: Available in-stock

10-20 Working Days: On Backorder

Will Deliver When Available: On Pre-Order or Reprinting

We ship your order once all items have arrived at our warehouse and are processed. Need those 2-4 day shipping items sooner? Just place a separate order for them!

An applied treatment of the key methods and state-of-the-art tools for visualizing and understanding statistical data

Smoothing of Multivariate Data provides an illustrative and hands-on approach to the multivariate aspects of density estimation, emphasizing the use of visualization tools. Rather than outlining the theoretical concepts of classification and regression, this book focuses on the procedures for estimating a multivariate distribution via smoothing.

The author first provides an introduction to various visualization tools that can be used to construct representations of multivariate functions, sets, data, and scales of multivariate density estimates. Next, readers are presented with an extensive review of the basic mathematical tools that are needed to asymptotically analyze the behavior of multivariate density estimators, with coverage of density classes, lower bounds, empirical processes, and manipulation of density estimates. The book concludes with an extensive toolbox of multivariate density estimators, including anisotropic kernel estimators, minimization estimators, multivariate adaptive histograms, and wavelet estimators.

A completely interactive experience is encouraged, as all examples and figurescan be easily replicated using the R software package, and every chapter concludes with numerous exercises that allow readers to test their understanding of the presented techniques. The R software is freely available on the book's related Web site along with "Code" sections for each chapter that provide short instructions for working in the R environment.

Combining mathematical analysis with practical implementations, Smoothing of Multivariate Data is an excellent book for courses in multivariate analysis, data analysis, and nonparametric statistics at the upper-undergraduate and graduatelevels. It also serves as a valuable reference for practitioners and researchers in the fields of statistics, computer science, economics, and engineering.

Jussi KlemelÄ, PhD, is Researcher in the Department of Mathematical Sciences at the University of Oulu, Finland. Dr. Klemelä has authored or coauthored numerous journal articles on his areas of research interest, which include density estimation and the implementation of cutting edge visualization tools.