Statistical Analysis with Missing Data

Regular price €92.99
A01=Donald B. Rubin
A01=Roderick J. A. Little
Age Group_Uncategorized
Age Group_Uncategorized
Author_Donald B. Rubin
Author_Roderick J. A. Little
automatic-update
Bayesian analysis
Bayesian data analysis
Category1=Non-Fiction
Category=PBT
COP=United States
data analysis
Delivery_Delivery within 10-20 working days
disclosure limitation
eq_isMigrated=2
eq_nobargain
guide to missing data
handling missing data
Language_English
mathematics
measurement error
methods for handling missing data
missing data
missing data analysis
missing data and applied statistics
missing data handbook
missing data theory
missing-data applications
PA=Available
Price_€50 to €100
probability
PS=Active
robust inference
softlaunch
statistical analysis
statistical data analysis
statistics
statistics and missing data

Product details

  • ISBN 9780470526798
  • Weight: 862g
  • Dimensions: 158 x 234mm
  • Publication Date: 24 May 2019
  • Publisher: John Wiley & Sons Inc
  • Publication City/Country: US
  • Product Form: Hardback
  • Language: English
Delivery/Collection within 10-20 working days

Our Delivery Time Frames Explained
2-4 Working Days: Available in-stock

10-20 Working Days: On Backorder

Will Deliver When Available: On Pre-Order or Reprinting

We ship your order once all items have arrived at our warehouse and are processed. Need those 2-4 day shipping items sooner? Just place a separate order for them!

An up-to-date, comprehensive treatment of a classic text on missing data in statistics

The topic of missing data has gained considerable attention in recent decades. This new edition by two acknowledged experts on the subject offers an up-to-date account of practical methodology for handling missing data problems. Blending theory and application, authors Roderick Little and Donald Rubin review historical approaches to the subject and describe simple methods for multivariate analysis with missing values. They then provide a coherent theory for analysis of problems based on likelihoods derived from statistical models for the data and the missing data mechanism, and then they apply the theory to a wide range of important missing data problems.

Statistical Analysis with Missing Data, Third Edition starts by introducing readers to the subject and approaches toward solving it. It looks at the patterns and mechanisms that create the missing data, as well as a taxonomy of missing data. It then goes on to examine missing data in experiments, before discussing complete-case and available-case analysis, including weighting methods. The new edition expands its coverage to include recent work on topics such as nonresponse in sample surveys, causal inference, diagnostic methods, and sensitivity analysis, among a host of other topics.
  • An updated “classic” written by renowned authorities on the subject
  • Features over 150 exercises (including many new ones)
  • Covers recent work on important methods like multiple imputation, robust alternatives to weighting, and Bayesian methods
  • Revises previous topics based on past student feedback and class experience
  • Contains an updated and expanded bibliography

The authors were awarded The Karl Pearson Prize in 2017 by the International Statistical Institute, for a research contribution that has had profound influence on statistical theory, methodology or applications. Their work "has been no less than defining and transforming." (ISI)

Statistical Analysis with Missing Data, Third Edition is an ideal textbook for upper undergraduate and/or beginning graduate level students of the subject. It is also an excellent source of information for applied statisticians and practitioners in government and industry.

Roderick J. A. Little, PhD., is Richard D. Remington Distinguished University Professor of Biostatistics, Professor of Statistics, and Research Professor, Institute for Social Research, at the University of Michigan.

Donald B. Rubin, PhD., is Professor, Yau Mathematical Sciences Center, Tsinghua University; Murray Shusterman Senior Research Fellow, Department of Statistical Science, Fox School of Business at Temple University; and Professor Emeritus, Harvard University.