Statistical Tests for Mixed Linear Models
Product details
- ISBN 9780471156536
- Weight: 699g
- Dimensions: 163 x 241mm
- Publication Date: 17 Feb 1998
- Publisher: John Wiley & Sons Inc
- Publication City/Country: US
- Product Form: Hardback
Our Delivery Time Frames Explained
2-4 Working Days: Available in-stock
10-20 Working Days: On Backorder
Will Deliver When Available: On Pre-Order or Reprinting
We ship your order once all items have arrived at our warehouse and are processed. Need those 2-4 day shipping items sooner? Just place a separate order for them!
In recent years a breakthrough has occurred in our ability to draw inferences from exact and optimum tests of variance component models, generating much research activity that relies on linear models with mixed and random effects. This volume covers the most important research of the past decade as well as the latest developments in hypothesis testing. It compiles all currently available results in the area of exact and optimum tests for variance component models and offers the only comprehensive treatment for these models at an advanced level.
Statistical Tests for Mixed Linear Models:
- Combines analysis and testing in one self-contained volume.
- Describes analysis of variance (ANOVA) procedures in balanced and unbalanced data situations.
- Examines methods for determining the effect of imbalance on data analysis.
- Explains exact and optimum tests and methods for their derivation.
- Summarizes test procedures for multivariate mixed and random models.
- Enables novice readers to skip the derivations and discussions on optimum tests. Offers plentiful examples and exercises, many of which are numerical in flavor.
- Provides solutions to selected exercises.
Statistical Tests for Mixed Linear Models is an accessible reference for researchers in analysis of variance, experimental design, variance component analysis, and linear mixed models. It is also an important text for graduate students interested in mixed models.
Thomas Mathew and Bimal K. Sinha are Professors of Statistics at the University of Maryland. Professor Sinha is coauthor of Robustness of Statistical Tests.
