Tidy Finance with Python | Agenda Bookshop Skip to content
Selected Colleen Hoover Books at €9.99c | In-store & Online
Selected Colleen Hoover Books at €9.99c | In-store & Online
A01=Christoph Frey
A01=Christoph Scheuch
A01=Patrick Weiss
A01=Stefan Voigt
Age Group_Uncategorized
Age Group_Uncategorized
Author_Christoph Frey
Author_Christoph Scheuch
Author_Patrick Weiss
Author_Stefan Voigt
automatic-update
Category1=Non-Fiction
Category=KCH
Category=KCHS
Category=KF
Category=PBT
Category=UFM
COP=United Kingdom
Delivery_Pre-order
Language_English
PA=Not yet available
Price_€50 to €100
PS=Active
softlaunch

Tidy Finance with Python

This textbook shows how to bring theoretical concepts from finance and econometrics to the data. Focusing on coding and data analysis with Python, we show how to conduct research in empirical finance from scratch. We start by introducing the concepts of tidy data and coding principles using pandas, numpy, and plotnine. Code is provided to prepare common open-source and proprietary financial data sources (CRSP, Compustat, Mergent FISD, TRACE) and organize them in a database. We reuse these data in all the subsequent chapters, which we keep as self-contained as possible. The empirical applications range from key concepts of empirical asset pricing (beta estimation, portfolio sorts, performance analysis, Fama-French factors) to modeling and machine learning applications (fixed effects estimation, clustering standard errors, difference-in-difference estimators, ridge regression, Lasso, Elastic net, random forests, neural networks) and portfolio optimization techniques.

Key Features:

  • Self-contained chapters on the most important applications and methodologies in finance, which can easily be used for the readers research or as a reference for courses on empirical finance.
  • Each chapter is reproducible in the sense that the reader can replicate every single figure, table, or number by simply copying and pasting the code we provide.
  • A full-fledged introduction to machine learning with scikit-learn based on tidy principles to show how factor selection and option pricing can benefit from Machine Learning methods.
  • We show how to retrieve and prepare the most important datasets financial economics: CRSP and Compustat, including detailed explanations of the most relevant data characteristics.
  • Each chapter provides exercises based on established lectures and classes which are designed to help students to dig deeper. The exercises can be used for self-studying or as a source of inspiration for teaching exercises.
See more
Current price €67.49
Original price €74.99
Save 10%
A01=Christoph FreyA01=Christoph ScheuchA01=Patrick WeissA01=Stefan VoigtAge Group_UncategorizedAuthor_Christoph FreyAuthor_Christoph ScheuchAuthor_Patrick WeissAuthor_Stefan Voigtautomatic-updateCategory1=Non-FictionCategory=KCHCategory=KCHSCategory=KFCategory=PBTCategory=UFMCOP=United KingdomDelivery_Pre-orderLanguage_EnglishPA=Not yet availablePrice_€50 to €100PS=Activesoftlaunch

Will deliver when available. Publication date 15 Jul 2024

Product Details
  • Weight: 485g
  • Dimensions: 178 x 254mm
  • Publication Date: 12 Jul 2024
  • Publisher: Taylor & Francis Ltd
  • Publication City/Country: United Kingdom
  • Language: English
  • ISBN13: 9781032676418

About Christoph FreyChristoph ScheuchPatrick WeissStefan Voigt

Christoph Frey is a Quantitative Researcher and Portfolio Manager at a family office in Hamburg and a Research Fellow at the Centre for Financial Econometrics Asset Markets and Macroeconomic Policy at Lancaster University. Prior to this he was the leading quantitative researcher for systematic multi-asset strategies at Berenberg Bank and worked as an Assistant Professor at the Erasmus Universiteit Rotterdam. Christoph published research on Bayesian Econometrics and specializes in financial econometrics and portfolio optimization problems.Christoph Scheuch is the Head of Artificial Intelligence at the social trading platform wikifolio.com. He is responsible for researching designing and prototyping of cutting-edge AI-driven products using R and Python. Before his focus on AI he was responsible for product management and business intelligence at wikifolio.com and an external lecturer at the Vienna University of Economics and Business where he taught finance students how to manage empirical projects.Stefan Voigt is an Assistant Professor of Finance at the Department of Economics at the University in Copenhagen and a research fellow at the Danish Finance Institute. His research focuses on blockchain technology high-frequency trading and financial econometrics. Stefan's research has been published in the leading finance and econometrics journals and he received the Danish Finance Institute Teaching Award 2022 for his courses for students and practitioners on empirical finance based on Tidy Finance.Patrick Weiss is an Assistant Professor of Finance at Reykjavik University and an external lecturer at the Vienna University of Economics and Business. His research activity centers around the intersection of empirical asset pricing and corporate finance with his research appearing in leading journals in financial economics. Patrick is especially passionate about empirical asset pricing and strives to understand the impact of methodological uncertainty on research outcomes.

Customer Reviews

Be the first to write a review
0%
(0)
0%
(0)
0%
(0)
0%
(0)
0%
(0)
We use cookies to ensure that we give you the best experience on our website. If you continue we'll assume that you are understand this. Learn more
Accept