A Proof that Artificial Neural Networks Overcome the Curse of Dimensionality in the Numerical Approximation of Black-Scholes Partial Differential Equations | Agenda Bookshop Skip to content
A01=Arnulf Jentzen
A01=Fabian Hornung
A01=Philipp Grohs
A01=Philippe von Wurstemberger
Age Group_Uncategorized
Age Group_Uncategorized
Author_Arnulf Jentzen
Author_Fabian Hornung
Author_Philipp Grohs
Author_Philippe von Wurstemberger
automatic-update
Category1=Non-Fiction
Category=PBK
Category=PBKJ
COP=United States
Delivery_Delivery within 10-20 working days
Language_English
PA=Available
Price_€50 to €100
PS=Active
softlaunch

A Proof that Artificial Neural Networks Overcome the Curse of Dimensionality in the Numerical Approximation of Black-Scholes Partial Differential Equations

View the abstract. See more
Current price €84.54
Original price €88.99
Save 5%
A01=Arnulf JentzenA01=Fabian HornungA01=Philipp GrohsA01=Philippe von WurstembergerAge Group_UncategorizedAuthor_Arnulf JentzenAuthor_Fabian HornungAuthor_Philipp GrohsAuthor_Philippe von Wurstembergerautomatic-updateCategory1=Non-FictionCategory=PBKCategory=PBKJCOP=United StatesDelivery_Delivery within 10-20 working daysLanguage_EnglishPA=AvailablePrice_€50 to €100PS=Activesoftlaunch
Delivery/Collection within 10-20 working days
Product Details
  • Dimensions: 178 x 254mm
  • Publication Date: 07 Apr 2023
  • Publisher: American Mathematical Society
  • Publication City/Country: United States
  • Language: English
  • ISBN13: 9781470456320

About Arnulf JentzenFabian HornungPhilipp GrohsPhilippe von Wurstemberger

Philipp Grohs University of Vienna Austria and Austrian Academy of Sciences Linz Austria.Fabian Hornung Karlsruhe Institute of Technology Germany and ETH Zurich Switzerland.Arnulf Jentzen The Chinese University of Hong Kong Shenzhen China University of Munster Germany and ETH Zurich Switzerland.Philippe von Wurstemberger ETH Zurich Switzerland and The Chinese University of Hong Kong Shenzhen China.

Customer Reviews

Be the first to write a review
0%
(0)
0%
(0)
0%
(0)
0%
(0)
0%
(0)
We use cookies to ensure that we give you the best experience on our website. If you continue we'll assume that you are understand this. Learn more
Accept