Emerging Atomic Layer Deposition for Hydrogen Energy | Agenda Bookshop Skip to content
Please note that books with a 10-20 working days delivery time may not arrive before Christmas.
Please note that books with a 10-20 working days delivery time may not arrive before Christmas.
A01=Patrick Ehi Imoisili
A01=Peter Ozaveshe Oviroh
A01=Sina Karimzadeh
A01=Sunday Temitope Oyinbo
A01=Tien-Chien Jen
Age Group_Uncategorized
Age Group_Uncategorized
Author_Patrick Ehi Imoisili
Author_Peter Ozaveshe Oviroh
Author_Sina Karimzadeh
Author_Sunday Temitope Oyinbo
Author_Tien-Chien Jen
automatic-update
Category1=Non-Fiction
Category=TGMT
Category=TH
Category=THX
COP=Switzerland
Delivery_Pre-order
Language_English
PA=Not yet available
Price_€100 and above
PS=Forthcoming
softlaunch

Emerging Atomic Layer Deposition for Hydrogen Energy

This book focuses on Atomic Layer Deposition (ALD) and its applications in the field of green hydrogen energy. It covers the fundamental understanding of how new functional materials can be synthesized by ALD, and provides insights into its use in advanced nanopatterning for microelectronics, energy storage systems, desalination, catalysis, and medical fields. The book also highlights the advancements in computational and experimental methodologies for optimizing ALD processes in the context of green hydrogen energy.  The book addresses aspects that might affect deposition and green hydrogen energy, and presents analysis and characterization techniques in the field. With specific examples illustrating the progress in green hydrogen ALD processes and their impact on other technologies, this book aims to enable the reduction of cost, energy waste, and adverse environmental impacts associated with hydrogen energy. It provides a comprehensive overview of ALD technology,  hydrogen production, purification, and storage methods, modeling and simulation techniques, analysis and characterization approaches, and future perspectives on green hydrogen energy.

See more
Current price €154.84
Original price €162.99
Save 5%
A01=Patrick Ehi ImoisiliA01=Peter Ozaveshe OvirohA01=Sina KarimzadehA01=Sunday Temitope OyinboA01=Tien-Chien JenAge Group_UncategorizedAuthor_Patrick Ehi ImoisiliAuthor_Peter Ozaveshe OvirohAuthor_Sina KarimzadehAuthor_Sunday Temitope OyinboAuthor_Tien-Chien Jenautomatic-updateCategory1=Non-FictionCategory=TGMTCategory=THCategory=THXCOP=SwitzerlandDelivery_Pre-orderLanguage_EnglishPA=Not yet availablePrice_€100 and abovePS=Forthcomingsoftlaunch

Will deliver when available. Publication date 07 Feb 2025

Product Details
  • Dimensions: 155 x 235mm
  • Publication Date: 07 Feb 2025
  • Publisher: Springer International Publishing AG
  • Publication City/Country: Switzerland
  • Language: English
  • ISBN13: 9783031677731

About Patrick Ehi ImoisiliPeter Ozaveshe OvirohSina KarimzadehSunday Temitope OyinboTien-Chien Jen

Dr Peter Ozaveshe Oviroh is a research fellow and also lectures on sustainable energy technologies at the Mechanical Engineering Science Department University of Johannesburg South Africa. He obtained his PhD from the same department. Dr. is a member of the American Society of Mechanical Engineers (ASME) and also a member of the Council of Engineers for the Energy Transition (CEET) - An independent advisory council to the United Nations Secretary-General. He has research interests in nanotechnology particularly applying atomic layer deposition (ALD) to develop materials for water desalination applications. In addition he is working on the applications of green hydrogen.  He has been involved in several other projects that involve energy modelling system optimization and in general sustainable energy technologies. Dr Oviroh has published in several journals and conferences.   Dr Sunday Temitope Oyinbo received his PhD in Mechanical Engineering Science from the University of Johannesburg (UJ). He is currently a postdoctoral research fellow at the University of Johannesburg. As a member of the JENANO Research Group at the University of Johannesburg his research interest focuses on nanotechnologies and associated processes (e.g. Atomic layer deposition (ALD) and cold gas dynamic spray (CGDS)). He has accumulated rich research experience in the microstructure reconstruction of metal matrix composite and hydrogen purification technology. He has research expertise in computational modelling and simulation materials and microstructural characterization finite element analysis (FEA) molecular dynamics (MD) density functional theory (DFT) and proficient knowledge in programming (LAMMPS code Python script VASP code). At present the ultra-thin film composite metal membrane experiment platform has been built through computational modelling and surface functionality in the absorption and separation of gas through the nanoporous membrane has been achieved. He has published various research papers in International Journals and Conferences in the areas of nanotechnology and hydrogen economy.   Dr. Sina Karimzadeh is a Postdoctoral research Fellow at the University of Johannesburg. He holds a PhD degree in Mechanical engineering from the University of Johannesburg in 2024. His current research interest focuses on the development of energy storage systems including Li-ion battery and Hydrogen Storage by using atomic layer deposition (ALD) technique. He has also been involved in a number of projects including Hydrogen Generation Thin Films and Nanotechnology Drug Delivery Heat Transfer Water Purification Membrane and Computational modelling and simulation. He is currently the Head of the ALD and innovation sub-research JENANO group and the Lead experimentalist at the ALD facility in the University of Johannesburg.   Dr. Patrick Imoisili is a Senior Research Fellow at The Mechanical Engineering Science Department Faculty of Engineering and the Built Environment. University of Johannesburg South Africa. He is a 4IR (Fourth Industrial Revolution) Nanotechnology expert with the JENANO Research Group and head of the smart material sub-research group. He received his Ph.D. in Industrial Chemistry from the Federal University of Technology Akure Nigeria. He is a charted Chemist with the Institute of Charted Chemists of Nigeria (ICCON). A registered member of the Polymer Institute of Nigeria (PIN) Chemical Society of Nigeria (CSN) South Africa Chemical Insitute (SACI) and South African Council for Natural Scientific Professions (SACNASP). His research interest is in but not limited to chemistry polymers natural fibers polymer composite Hybrid composite nanocomposite nanoparticle synthesis for drug delivery and wastewater treatment renewable energy solar cells thin films green hydrogen atomic layer deposition (ALD) research and innovations. Professor Tien-Chien Jen obtained his Ph.D. in Mechanical and Aerospace Engineering from UCLA. Prof Jen is also the member of Academy of Science of South Africa and American Society of Mechanical Engineering Fellow. Currently he heads a Joint Research Centre with Nanjing Tech University focusing on Sustainable Materials and Manufacturing. Recently he was awarded a NEP grant by the SA National Research Foundation to acquire cutting-edge Atomic Layer Deposition (ALD) Tools making significant strides in thin film coating technology. Most recently Prof Jen is further awarded the South Africa Research Chair (SARChI) on Green Hydrogen. Prof. Jen's expertise spans various fields including machining processes cold gas dynamics spraying fuel cells batteries and material processing. He is also recognized for his extensive publication record with numerous peer-reviewed articles and contributions to specialized books.

Customer Reviews

Be the first to write a review
0%
(0)
0%
(0)
0%
(0)
0%
(0)
0%
(0)
We use cookies to ensure that we give you the best experience on our website. If you continue we'll assume that you are understand this. Learn more
Accept