Nonparametric Methods in Statistics with SAS Applications
Product details
- ISBN 9781466580626
- Weight: 360g
- Dimensions: 156 x 234mm
- Publication Date: 19 Aug 2013
- Publisher: Taylor & Francis Inc
- Publication City/Country: US
- Product Form: Paperback
- Language: English
Our Delivery Time Frames Explained
2-4 Working Days: Available in-stock
10-20 Working Days: On Backorder
Will Deliver When Available: On Pre-Order or Reprinting
We ship your order once all items have arrived at our warehouse and are processed. Need those 2-4 day shipping items sooner? Just place a separate order for them!
Designed for a graduate course in applied statistics, Nonparametric Methods in Statistics with SAS Applications teaches students how to apply nonparametric techniques to statistical data. It starts with the tests of hypotheses and moves on to regression modeling, time-to-event analysis, density estimation, and resampling methods.
The text begins with classical nonparametric hypotheses testing, including the sign, Wilcoxon sign-rank and rank-sum, Ansari-Bradley, Kolmogorov-Smirnov, Friedman rank, Kruskal-Wallis H, Spearman rank correlation coefficient, and Fisher exact tests. It then discusses smoothing techniques (loess and thin-plate splines) for classical nonparametric regression as well as binary logistic and Poisson models. The author also describes time-to-event nonparametric estimation methods, such as the Kaplan-Meier survival curve and Cox proportional hazards model, and presents histogram and kernel density estimation methods. The book concludes with the basics of jackknife and bootstrap interval estimation.
Drawing on data sets from the author’s many consulting projects, this classroom-tested book includes various examples from psychology, education, clinical trials, and other areas. It also presents a set of exercises at the end of each chapter. All examples and exercises require the use of SAS 9.3 software. Complete SAS codes for all examples are given in the text. Large data sets for the exercises are available on the author’s website.
Olga Korosteleva is an associate professor of statistics in the Department of Mathematics and Statistics at California State University, Long Beach (CSULB). She received a Ph.D. in statistics from Purdue University.