Optimizing Generative AI Workloads for Sustainability: Balancing Performance and Environmental Impact in Generative AI | Agenda Bookshop Skip to content
Please note that books with a 10-20 working days delivery time will not arrive before Christmas.
Please note that books with a 10-20 working days delivery time will not arrive before Christmas.
A01=Ishneet Kaur Dua
A01=Parth Girish Patel
Age Group_Uncategorized
Age Group_Uncategorized
Author_Ishneet Kaur Dua
Author_Parth Girish Patel
automatic-update
Category1=Non-Fiction
Category=UYQ
Category=UYQM
COP=Germany
Delivery_Pre-order
Language_English
PA=Not yet available
Price_€50 to €100
PS=Forthcoming
softlaunch

Optimizing Generative AI Workloads for Sustainability: Balancing Performance and Environmental Impact in Generative AI

English

By (author): Ishneet Kaur Dua Parth Girish Patel

This comprehensive guide provides practical strategies for optimizing Generative AI systems to be more sustainable and responsible. As advances in Generative AI such as large language models accelerate, optimizing these resource-intensive workloads for efficiency and alignment with human values grows increasingly urgent.

The book starts with the concept of Generative AI and its wide-ranging applications, while also delving into the environmental impact of AI workloads and the growing importance of adopting sustainable AI practices. It then delves into the fundamentals of efficient AI workload management, providing insights into understanding AI workload characteristics, measuring performance, and identifying bottlenecks and inefficiencies. Hardware optimization strategies are explored in detail, covering the selection of energy-efficient hardware, leveraging specialized AI accelerators, and optimizing hardware utilization and scheduling for sustainable operations. You are also guided through software optimization techniques tailored for Generative AI, including efficient model architecture, compression, and quantization methods, and optimization of software libraries and frameworks. Data management and preprocessing strategies are also addressed, emphasizing efficient data storage, cleaning, preprocessing, and augmentation techniques to enhance sustainability throughout the data life cycle. The book further explores model training and inference optimization, cloud and edge computing strategies for Generative AI, energy-efficient deployment and scaling techniques, and sustainable AI life cycle management practices, and concludes with real-world case studies and best practices

By the end of this book, you will take away a toolkit of impactful steps you can implement to minimize the environmental harms and ethical risks of Generative AI. For organizations deploying any type of generative model at scale, this essential guide provides a blueprint for developing responsible AI systems that benefit society.

 

What You Will Learn

  • Understand how Generative AI can be more energy-efficient through improvements such as model compression, efficient architecture, hardware optimization, and carbon footprint tracking
  • Know the techniques to minimize data usage, including evaluation, filtering, synthesis, few-shot learning, and monitoring data demands over time
  • Understand spanning efficiency, data minimization, and alignment for comprehensive responsibility
  • Know the methods for detecting, understanding, and mitigating algorithmic biases, ensuring diversity in data collection, and monitoring model fairness

 

Who This book Is For

Professionals seeking to adopt responsible and sustainable practices in their Generative AI work; leaders and practitioners who need actionable strategies and recommendations that can be implemented directly in real-world systems and organizational workflows; ML engineers and data scientists building and deploying Generative AI systems in industry settings; and researchers developing new generative AI techniques, such as at technology companies or universities

See more
Current price €59.84
Original price €62.99
Save 5%
A01=Ishneet Kaur DuaA01=Parth Girish PatelAge Group_UncategorizedAuthor_Ishneet Kaur DuaAuthor_Parth Girish Patelautomatic-updateCategory1=Non-FictionCategory=UYQCategory=UYQMCOP=GermanyDelivery_Pre-orderLanguage_EnglishPA=Not yet availablePrice_€50 to €100PS=Forthcomingsoftlaunch

Will deliver when available. Publication date 04 Nov 2024

Product Details
  • Dimensions: 155 x 235mm
  • Publication Date: 04 Nov 2024
  • Publisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
  • Publication City/Country: Germany
  • Language: English
  • ISBN13: 9798868809163

About Ishneet Kaur DuaParth Girish Patel

Ishneet Kaur Dua is an experienced solutions architect specializing in generative artificial intelligence machine learning environmental sustainability and cloud computing. With years of hands-on experience she excels in designing resource efficient cost-effective resilient systems on leading cloud platforms such as AWS GCP and Azure. Ishneet started her career at CDK Global where she worked as a DevOps engineer and focused on building highly available Kubernetes environments on AWS cloud and on-prem. Passionate about leveraging AI and ML for innovation Ishneet has expertise in diverse areas including low code no code ML computer vision NLP recommendation engines and predictive analytics. She advocates for ethical AI practices ensuring fairness and transparency in AI systems while making them accessible through open-source initiatives. As a thought leader Ishneet shares her insights at global tech conferences focusing on AI/ML cloud architecture and sustainability. She actively mentors women in tech aiming to inspire and empower the next generation of STEM professionals. Driven by a vision of harnessing technology for positive change Ishneet is dedicated to building a future where AI creates opportunities for all and addresses complex real-world challenges.   Parth Girish Patel is a seasoned architect with a wealth of experience spanning over 17 years encompassing management consulting and cloud computing. Currently at Amazon Web Services (AWS) he specializes in artificial intelligence/machine learning generative AI sustainability application modernization and cloud-native patterns to deliver resilient high-performance solutions optimized for cost and operational efficiency.   Starting his career as a software engineer Parth transitioned into consulting at Deloitte where he provided strategic guidance to Fortune companies on their cloud implementation and led intricate enterprise transformations. This diverse background equipped him with a unique blend of business acumen and technical expertise enabling him to navigate complex digital transformations effectively. As an AWS solutions architect Parth plays a pivotal role in guiding customers through their cloud journey and AI adoption offering insights into scalable architectures and implementing end-to-end machine learning solutions. With specialization across leading cloud providers like AWS Azure and GCP as well as proficiency in Machine Learning skills like Natural Language Processing Computer Vision and predictive analytics Parth is well-equipped to tackle diverse technical challenges.   Passionate about sustainable AI Parth advocates for the responsible and ethical use of AI emphasizing transparency and environmental consciousness. He leverages his leadership skills to mentor teams and individuals fostering a collaborative and innovative environment aimed at driving a positive impact across organizations and society as a whole.    

Customer Reviews

Be the first to write a review
0%
(0)
0%
(0)
0%
(0)
0%
(0)
0%
(0)
We use cookies to ensure that we give you the best experience on our website. If you continue we'll assume that you are understand this. Learn more
Accept