Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data | Agenda Bookshop Skip to content
Online orders placed from 19/12 onward will not arrive in time for Christmas.
Online orders placed from 19/12 onward will not arrive in time for Christmas.
A01=Alexander Gray
A01=Andrew J. Connolly
A01=Jacob T. VanderPlas
A01=Zeljko Ivezic
Author_Alexander Gray
Author_Andrew J. Connolly
Author_Jacob T. VanderPlas
Author_Zeljko Ivezic
Category1=Non-Fiction
Category=NL-PB
Category=NL-PG
Category=NL-UN
Category=NL-UY
COP=United States
Discount=15
Format=BB
Format_Hardback
HMM=254
IMPN=Princeton University Press
ISBN13=9780691151687
Language_English
PA=Available
PD=20140112
POP=New Jersey
Price_€100 to €200
PS=Active
PUB=Princeton University Press
SN=Princeton Series in Modern Observational Astronomy
Subject=Astronomy- Space & Time
Subject=Computer Science
Subject=Databases
Subject=Mathematics
WG=1247
WMM=178

Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data

As telescopes, detectors, and computers grow ever more powerful, the volume of data at the disposal of astronomers and astrophysicists will enter the petabyte domain, providing accurate measurements for billions of celestial objects. This book provides a comprehensive and accessible introduction to the cutting-edge statistical methods needed to efficiently analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the upcoming Large Synoptic Survey Telescope. It serves as a practical handbook for graduate students and advanced undergraduates in physics and astronomy, and as an indispensable reference for researchers. Statistics, Data Mining, and Machine Learning in Astronomy presents a wealth of practical analysis problems, evaluates techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. For all applications described in the book, Python code and example data sets are provided. The supporting data sets have been carefully selected from contemporary astronomical surveys (for example, the Sloan Digital Sky Survey) and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, evaluate the methods, and adapt them to their own fields of interest. * Describes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data sets * Features real-world data sets from contemporary astronomical surveys * Uses a freely available Python codebase throughout * Ideal for students and working astronomers See more
Current price €104.55
Original price €123.00
Save 15%

Will deliver when available.

Product Details
  • Format: Hardback
  • Weight: 1247g
  • Dimensions: 178 x 254mm
  • Publication Date: 12 Jan 2014
  • Publisher: Princeton University Press
  • Publication City/Country: New Jersey, United States
  • Language: English
  • ISBN13: 9780691151687
We use cookies to ensure that we give you the best experience on our website. If you continue we'll assume that you are understand this. Learn more
Accept