Vectorization: A Practical Guide to Efficient Implementations of Machine Learning Algorithms | Agenda Bookshop Skip to content
Online orders placed from 19/12 onward will not arrive in time for Christmas.
Online orders placed from 19/12 onward will not arrive in time for Christmas.
A01=Edward DongBo Cui
Age Group_Uncategorized
Age Group_Uncategorized
Author_Edward DongBo Cui
automatic-update
Category1=Non-Fiction
Category=PBK
Category=UYQM
COP=United States
Delivery_Pre-order
Language_English
PA=Awaiting stock
Price_€100 and above
PS=Forthcoming
softlaunch

Vectorization: A Practical Guide to Efficient Implementations of Machine Learning Algorithms

English

By (author): Edward DongBo Cui

Enables readers to develop foundational and advanced vectorization skills for scalable data science and machine learning and address real-world problems

Offering insights across various domains such as computer vision and natural language processing, Vectorization covers the fundamental topics of vectorization including array and tensor operations, data wrangling, and batch processing. This book illustrates how the principles discussed lead to successful outcomes in machine learning projects, serving as concrete examples for the theories explained, with each chapter including practical case studies and code implementations using NumPy, TensorFlow, and PyTorch.

Each chapter has one or two types of contents: either an introduction/comparison of the specific operations in the numerical libraries (illustrated as tables) and/or case study examples that apply the concepts introduced to solve a practical problem (as code blocks and figures). Readers can approach the knowledge presented by reading the text description, running the code blocks, or examining the figures.

Written by the developer of the first recommendation system on the Peacock streaming platform, Vectorization explores sample topics including:

  • Basic tensor operations and the art of tensor indexing, elucidating how to access individual or subsets of tensor elements
  • Vectorization in tensor multiplications and common linear algebraic routines, which form the backbone of many machine learning algorithms
  • Masking and padding, concepts which come into play when handling data of non-uniform sizes, and string processing techniques for natural language processing (NLP)
  • Sparse matrices and their data structures and integral operations, and ragged or jagged tensors and the nuances of processing them

From the essentials of vectorization to the subtleties of advanced data structures, Vectorization is an ideal one-stop resource for both beginners and experienced practitioners, including researchers, data scientists, statisticians, and other professionals in industry, who seek academic success and career advancement.

See more
Current price €118.74
Original price €124.99
Save 5%
A01=Edward DongBo CuiAge Group_UncategorizedAuthor_Edward DongBo Cuiautomatic-updateCategory1=Non-FictionCategory=PBKCategory=UYQMCOP=United StatesDelivery_Pre-orderLanguage_EnglishPA=Awaiting stockPrice_€100 and abovePS=Forthcomingsoftlaunch

Will deliver when available.

Product Details
  • Publication Date: 11 Feb 2025
  • Publisher: John Wiley & Sons Inc
  • Publication City/Country: United States
  • Language: English
  • ISBN13: 9781394272945

About Edward DongBo Cui

Edward DongBo Cui is a Data Science and Machine Learning Engineering Leader who holds a PhD in Neuroscience from Case Western Reserve University USA. Edward served as Director of Data Science at NBC Universal building the first recommendation system on the new Peacock streaming platform. Previously he was Lead Data Scientist at Nielsen Global Media. He is an expert in ML engineering research and MLOps to drive data-centric decision-making and enhance product innovation.

Customer Reviews

Be the first to write a review
0%
(0)
0%
(0)
0%
(0)
0%
(0)
0%
(0)
We use cookies to ensure that we give you the best experience on our website. If you continue we'll assume that you are understand this. Learn more
Accept