Variational Models and Methods in Solid and Fluid Mechanics
English
F. dell'Isola, L. Placidi: Variational principles are a powerful tool also for formulating field theories. - F. dell'Isola, P. Seppecher, A. Madeo: Beyond Euler-Cauchy Continua. The structure of contact actions in N-th gradient generalized continua: a generalization of the Cauchy tetrahedron argument. - B. Bourdin, G.A. Francfort: Fracture. - S. Gavrilyuk: Multiphase flow modeling via Hamilton's principle. - V. L. Berdichevsky: Introduction to stochastic variational problems. - A. Carcaterra: New concepts in damping generation and control: theoretical formulation and industrial applications. - F. dell'Isola, P. Seppecher, A. Madeo: Fluid shock wave generation at solid-material discontinuity surfaces in porous media.
Variational methods give an efficient and elegant way to formulate and solve mathematical problems that are of interest to scientists and engineers. In this book three fundamental aspects of the variational formulation of mechanics will be presented: physical, mathematical and applicative ones.
The first aspect concerns the investigation of the nature of real physical problems with the aim of finding the best variational formulation suitable to those problems. The second aspect is the study of the well-posedeness of those mathematical problems which need to be solved in order to draw previsions from the formulated models. And the third aspect is related to the direct application of variational analysis to solve real engineering problems.