Product details
- ISBN 9781032777658
- Weight: 453g
- Dimensions: 156 x 234mm
- Publication Date: 15 Oct 2024
- Publisher: Taylor & Francis Ltd
- Publication City/Country: GB
- Product Form: Hardback
- Language: English
Our Delivery Time Frames Explained
2-4 Working Days: Available in-stock
10-20 Working Days: On Backorder
Will Deliver When Available: On Pre-Order or Reprinting
We ship your order once all items have arrived at our warehouse and are processed. Need those 2-4 day shipping items sooner? Just place a separate order for them!
Actuarial loss models are statistical models used by insurance companies to estimate the frequency and severity of future losses, set premiums, and reserve funds to cover potential claims. Actuarial loss models are a subject in actuarial mathematics that focus on the pricing and reserving for short-term coverages.
This is a concise textbook written for undergraduate students majoring in actuarial science who wish to learn the basics of actuarial loss models. This book can be used as a textbook for a one-semester course on actuarial loss models. The prerequisite for this book is a first course on calculus. The reader is supposed to be familiar with differentiation and integration.
This book covers part of the learning outcomes of the Fundamentals of Actuarial Mathematics (FAM) exam and the Advanced Short-Term Actuarial Mathematics (ASTAM) exam administered by the Society of Actuaries. It can be used by actuarial students and practitioners who prepare for the aforementioned actuarial exams.
Key Features:
- Review core concepts in probability theory.
- Cover important topics in actuarial loss models.
- Include worked examples.
- Provide both theoretical and numerical exercises.
- Include solutions of selected exercises.
Guojun Gan is an Associate Professor in the Department of Mathematics at the University of Connecticut, Storrs, Connecticut, USA. He received a BS degree from Jilin University, Changchun, China, in 2001 and MS and PhD degrees from York University, Toronto, Canada, in 2003 and 2007, respectively. His research interests are in the interdisciplinary areas of actuarial science and data science.