Lithium-Ion Batteries: Materials, Applications and Technology | Agenda Bookshop Skip to content
Black Friday Sale Now On! | Buy 3 Get 1 Free on all books | Instore & Online.
Black Friday Sale Now On! | Buy 3 Get 1 Free on all books | Instore & Online.
Age Group_Uncategorized
Age Group_Uncategorized
automatic-update
B01=Geoffrey Cook
B01=Lana Castillo
Category1=Non-Fiction
Category=THR
COP=United States
Delivery_Delivery within 10-20 working days
Language_English
PA=In stock
Price_€100 and above
PS=Active
softlaunch

Lithium-Ion Batteries: Materials, Applications and Technology

English

This compilation begins by discussing Sn, Sb and Ge-based anodes. Various approaches for alleviating volume changes corresponding to each kind of anode are presented in regards to the last 20 years. Sn, Sb and Ge-based alloy-type anodes have attracted considerable research interest as promising candidates for next-generation LIBs due to their high theoretical capacities, suitable operating voltages and natural abundances. Next, the authors discuss the synthesis and application of Titanium dioxide (TiO2) based lithium-ion battery anodes. TiO2 has attracted considerable attention as a promising alternative lithium-ion battery anode. The evolution of studies on synthetic methods, performance improvement, and the size tuning strategy are thoroughly addressed. Following this, the book focuses on clarifying the mechanisms of lithium dendrite growth, the issues related to lithium dendrites, and the recent advances for technical solutions. To power electric vehicles, a minimum energy density of 300 Wh/kg is required. State-of-the-art LIBs are dominating portable electronics, but can only enable an energy density of 100-220 Wh/kg in practice to date. In this regard, metallic lithium is highly regarded as promising next-generation anodes, ascribed to its extremely high theoretical capacity of 3860 mAh/g versus 372 mAh/g of the commercial graphite anodes. Recent progress in the development of Si/Gn nanocomposite anodes for lithium-ion batteries is also studied. The synthetic routes and electrochemical performance of these nanomaterials and the underlying reaction mechanisms are systematically described. The authors maintain that more research efforts are needed for the widespread applications of such composite anodes in the future of lithium-ion batteries. Afterwards, the advanced ab initio atomistic thermodynamics approach for electrode materials in LIBs is formulated, which enables the resolution of the interfacial structure of an LIB electrode material in an electrochemical environment under (constrained) reaction conditions. This universal approach is outlined, using state-of-the-art electrode materials in LIBs, such as LTO or lithium cobaltite (LCO, LiCoO2) as examples. See more
Current price €189.04
Original price €198.99
Save 5%
Age Group_Uncategorizedautomatic-updateB01=Geoffrey CookB01=Lana CastilloCategory1=Non-FictionCategory=THRCOP=United StatesDelivery_Delivery within 10-20 working daysLanguage_EnglishPA=In stockPrice_€100 and abovePS=Activesoftlaunch
Delivery/Collection within 10-20 working days
Product Details
  • Weight: 478g
  • Dimensions: 155 x 230mm
  • Publication Date: 01 Apr 2018
  • Publisher: Nova Science Publishers Inc
  • Publication City/Country: United States
  • Language: English
  • ISBN13: 9781536134971

Customer Reviews

No reviews yet
0%
(0)
0%
(0)
0%
(0)
0%
(0)
0%
(0)
We use cookies to ensure that we give you the best experience on our website. If you continue we'll assume that you are understand this. Learn more
Accept