The Bio-inspired X-Structure/Mechanism Approach for Exploring Nonlinear Benefits in Engineering: Part II-Nonlinear Inertia and Multi-direction Vibration Isolation | Agenda Bookshop Skip to content
Online orders placed from 19/12 onward will not arrive in time for Christmas.
Online orders placed from 19/12 onward will not arrive in time for Christmas.
A01=Xingjian Jing
Age Group_Uncategorized
Age Group_Uncategorized
Author_Xingjian Jing
automatic-update
Category1=Non-Fiction
Category=GPFC
Category=TBJ
Category=TJFM
COP=Singapore
Delivery_Delivery within 10-20 working days
Language_English
PA=Available
Price_€100 and above
PS=Active
softlaunch

The Bio-inspired X-Structure/Mechanism Approach for Exploring Nonlinear Benefits in Engineering: Part II-Nonlinear Inertia and Multi-direction Vibration Isolation

English

By (author): Xingjian Jing

This book presents a unique approach to the design and analysis of beneficial nonlinearity, which can take an important and critical role in engineering systems and thus cannot be simply ignored in structural design, dynamic response analysis, and parameter selection. A key issue in the area is thus systematically addressed about how to analyze and design potential nonlinearities introduced to or inherent in a system of under study, which is a must-do task in many practical applications involving vibration control, energy harvesting, sensor systems and robots, etc. This book, therefore, presents an up-to-date summary on the most recent development of a cutting-edge method for nonlinearity manipulation and employment developed in recent several years, named as the X-shaped structure or mechanism approach. The method is inspired from animal leg/limb skeletons and can provide passive low-cost high-efficiency adjustable and beneficial nonlinear stiffness (high static and ultra-low dynamic), nonlinear damping (dependent on resonant frequency and vibration excitation amplitude) and nonlinear inertia (low static and high dynamic) individually or simultaneously. The X-shaped structure or mechanism is a generic structure or mechanism representing a class of beneficial geometric nonlinearity with realizable and flexible linkage mechanism or structural design of different variants or forms (quadrilateral, diamond, polygon, K/Z/S/V-shape, or others) which all share similar geometric nonlinearity and thus similar nonlinear stiffness/damping properties, flexible in design, and easy to implement. This book systematically reviews the research background, motivation, essential bio-inspired ideas, advantages of this novel method, beneficial nonlinear properties in stiffness, damping and inertia, and potential applications, which have been developed ever since 2010. This book reveals important nonlinear properties and dynamic characteristics of nonlinear inertia that can be provided through the X-structure/mechanism and also presents advantageous features of X-structure/mechanism methods in multi-direction vibration control.

See more
Current price €146.69
Original price €162.99
Save 10%
A01=Xingjian JingAge Group_UncategorizedAuthor_Xingjian Jingautomatic-updateCategory1=Non-FictionCategory=GPFCCategory=TBJCategory=TJFMCOP=SingaporeDelivery_Delivery within 10-20 working daysLanguage_EnglishPA=AvailablePrice_€100 and abovePS=Activesoftlaunch
Delivery/Collection within 10-20 working days
Product Details
  • Dimensions: 155 x 235mm
  • Publication Date: 22 Sep 2024
  • Publisher: Springer Verlag Singapore
  • Publication City/Country: Singapore
  • Language: English
  • ISBN13: 9789819764563

About Xingjian Jing

Prof. Xingjian Jing received his B.S. degree from Zhejiang University China M.S. degree and Ph.D. degree in Robotics from Shenyang Institute of Automation Chinese Academy of Sciences China respectively. He also achieved a Ph.D. degree in nonlinear systems and signal processing from University of Sheffield UK. He is now Professor with the Department of Mechanical Engineering City University of Hong Kong and his current research interests are generally related to Nonlinear Dynamics Vibration Control and Robots focusing on theory and methods for employing nonlinear benefits in engineering including nonlinear frequency domain methods nonlinear system identification or signal processing vibration control robust control sensor technology energy harvesting nonlinear fault diagnosis or information processing bio-inspired systems and methods bio-inspired robotics and control etc. He is the recipient of a series of academic and professional awards including 2016 IEEE SMC Andrew P. Sage Best Transactions Paper Award 2017 TechConnect World Innovation Award in US 2017 EASD Senior Research Prize in Europe and 2017 the First Prize of HK Construction Industry Council Innovation Award. He has published more than 200 refereed papers and obtained about 30+ patents filed in China and USA. He currently serves as Associate Editors for IEEE Transactions on Systems Man Cybernetics-Systems IEEE Transactions on Industrial Electronics Mechanical Systems and Signal Processing and Nonlinear Dynamics. He is Specialty Chief Editor on Vibration Systems of Frontiers in Mechanical Engineering and was Technical Editor of IEEE/ASME Transactions on Mechatronics and Lead Editors of special issues on Exploring nonlinear benefits in engineering published in Mechanical Systems and Signal Processing in 2018/2019 and 2021/2022. He is one of the founding chairs of International Conference on Applied Nonlinear Dynamics Vibration & Control (ICANDVC) since 2021 Senior members of IEEE and honorary/guest professors of Nanjing Forest University Ningbo Institute of Materials Technology & Engineering (CAS) Beijing University of Science and Technology Northwest Polytechnic University etc.

Customer Reviews

Be the first to write a review
0%
(0)
0%
(0)
0%
(0)
0%
(0)
0%
(0)
We use cookies to ensure that we give you the best experience on our website. If you continue we'll assume that you are understand this. Learn more
Accept