The SAGE Handbook of Multilevel Modeling
English
The Handbook establishes the connections in multilevel modeling, bringing together leading experts from around the world to provide a roadmap for applied researchers linking theory and practice, as well as a unique arsenal of state-of-the-art tools. It forges vital connections that cross traditional disciplinary divides and introduces best practice in the field.
- Part I establishes the framework for estimation and inference, including chapters dedicated to notation, model selection, fixed and random effects, and causal inference.
- Part II develops variations and extensions, such as nonlinear, semiparametric and latent class models.
- Part III includes discussion of missing data and robust methods, assessment of fit and software.
- Part IV consists of exemplary modeling and data analyses written by methodologists working in specific disciplines.