Financial Signal Processing and Machine Learning
English
Key features:
- Highlights signal processing and machine learning as key approaches to quantitative finance.
- Offers advanced mathematical tools for high-dimensional portfolio construction, monitoring, and post-trade analysis problems.
- Presents portfolio theory, sparse learning and compressed sensing, sparsity methods for investment portfolios. including eigen-portfolios, model return, momentum, mean reversion and non-Gaussian data-driven risk measures with real-world applications of these techniques.
- Includes contributions from leading researchers and practitioners in both the signal and information processing communities, and the quantitative finance community.