Stochastic Methods in Scientific Computing

Regular price €104.99
2D Ising model
A01=Biagio Lucini
A01=Kurt Langfeld
A01=Massimo D'Elia
Age Group_Uncategorized
Age Group_Uncategorized
Author_Biagio Lucini
Author_Kurt Langfeld
Author_Massimo D'Elia
automatic-update
Category1=Non-Fiction
Category=PBWL
Category=PH
Category=UB
Category=UKC
COP=United States
Delivery_Pre-order
eq_computing
eq_isMigrated=2
eq_non-fiction
eq_science
High-Performance Computing
Langevin simulations
Language_English
Monte Carlo methods
Monte-Carlo integration
PA=Not yet available
Price_€50 to €100
PS=Active
Random walks
softlaunch

Product details

  • ISBN 9781498796330
  • Weight: 802g
  • Dimensions: 156 x 234mm
  • Publication Date: 11 Jun 2024
  • Publisher: Taylor & Francis Inc
  • Publication City/Country: US
  • Product Form: Hardback
  • Language: English
Delivery/Collection within 10-20 working days

Our Delivery Time Frames Explained
2-4 Working Days: Available in-stock

10-20 Working Days
: On Backorder

Will Deliver When Available
: On Pre-Order or Reprinting

We ship your order once all items have arrived at our warehouse and are processed. Need those 2-4 day shipping items sooner? Just place a separate order for them!

Stochastic Methods in Scientific Computing: From Foundations to Advanced Techniques introduces the reader to advanced concepts in stochastic modelling, rooted in an intuitive yet rigorous presentation of the underlying mathematical concepts. A particular emphasis is placed on illuminating the underpinning Mathematics, and yet have the practical applications in mind. The reader will find valuable insights into topics ranging from Social Sciences and Particle Physics to modern-day Computer Science with Machine Learning and AI in focus. The book also covers recent specialised techniques for notorious issues in the field of stochastic simulations, providing a valuable reference for advanced readers with an active interest in the field.

Features

  • Self-contained, starting from the theoretical foundations and advancing to the most recent developments in the field
  • Suitable as a reference for post-graduates and researchers or as supplementary reading for courses in numerical methods, scientific computing, and beyond
  • Interdisciplinary, laying a solid ground for field-specific applications in finance, physics and biosciences on common theoretical foundations
  • Replete with practical examples of applications to classic and current research problems in various fields.

Massimo D’Elia is Professor of Theoretical Physics at the Physics Department of the University of Pisa. Alumnus of the Scuola Normale Superiore in Pisa, he got his PhD in Physics from Pisa University in 1998. He has been Postdoctoral Fellow at the University of Cyprus and at ETH, Zurich, and Assistant Professor at the Physics Department of the University of Genoa. He is an expert in Lattice Gauge Theories and their implementation on HPC infrastructures, with interests also in Quantum Computing and numerical approaches to Quantum Gravity. He has obtained various achievements, especially in the study of the Phase Diagram of strong interactions. He has served as a reviewer for major scientific journals and funding agencies. He is author of two textbooks and more than 200 papers.

Kurt Langfeld is Professor of Theoretical Physics and Head of School of Mathematics at the University of Leeds, England. His work in numerical methods for simulating Quantum Field Theories and Particle Physics is widely respected, with over 180 articles published in international journals.
In 1991, he was awarded a PhD in Theoretical Physics from Technical University of Munich. He went on to serve as Researcher and Lecturer at the University of T¨ubingen, Germany from 1991 to 2006; during this time he also enjoyed research visits to CEA, Saclay (Paris) and KIAS (Seoul). In 1999, he achieved the highly esteemed Venia Legendi award at the University of Tubingen. 2005 saw him become Professor for Theoretical Physics at the University of Tubingen, before moving on to Plymouth Univeristy as part of their Particle Physics group in 2006. April 2012 saw him assume full Professorship for Theoretical Physics at Plymouth and 2016 saw him become Professor and Head of Department of Mathematical Sciences at the University of Liverpool. In 2020, he took up his current role as Head of School of Mathematics at the University of Leeds.
He has dedicated himself to giving back to the community; he has been an active reviewer for the Engineering and Physical Sciences Research Council (EPSRC), Austrian council FWF, Swiss National Supercomputer Center (CSCS). He is a member of the Parliament Scientific Committee, devoted trustee of the University of Liverpool Maths School (ULMaS) and part of the Steering Group opening an University sponsored Mathematics specialist 6th form in Leeds.

Biagio Lucini is a Fellow of the Learned Society of Wales and a Professor of Mathematics at Swansea University. He was awarded a Ph.D. in Theoretical Particle Physics by Scuola Normale (Pisa, Italy) in 2000. Before joining Swansea University in 2005, he was a Postdoctoral Fellow at the Rudolf Peierls Centre for Theoretical Physics (Oxford University, UK) from 2000 to 2003 and at the Theoretical Physics Institute of ETH (Zurich, Switzerland) from 2003 to 2005. Fellowship and awards he has received include a Royal Society Wolfson Merit Award (2017-2022) and a Leverhulme Research Fellowship (2020-2022). His research activity is centred around Monte Carlo calculations in Statistical Mechanics and Particle Physics. In particular, his interests are in Phase Transitions and Critical Phenomena, including machine learning approaches and efficient algorithms for simulations near criticality using High Performance Computing architectures. To date, his scientific contributions have resulted in over 180 research papers.