Fundamentals of Data Observability: Implement Trustworthy End-To-End Data Solutions | Agenda Bookshop Skip to content
Online orders placed from 19/12 onward will not arrive in time for Christmas.
Online orders placed from 19/12 onward will not arrive in time for Christmas.
A01=Andy Petrella
Age Group_Uncategorized
Age Group_Uncategorized
Author_Andy Petrella
automatic-update
Category1=Non-Fiction
Category=UGK
COP=United States
Delivery_Delivery within 10-20 working days
Language_English
PA=Available
Price_€50 to €100
PS=Active
softlaunch

Fundamentals of Data Observability: Implement Trustworthy End-To-End Data Solutions

English

By (author): Andy Petrella

Quickly detect, troubleshoot, and prevent a wide range of data issues through data observability, a set of best practices that enables data teams to gain greater visibility of data and its usage. If you're a data engineer, data architect, or machine learning engineer who depends on the quality of your data, this book shows you how to focus on the practical aspects of introducing data observability in your everyday work.

Author Andy Petrella helps you build the right habits to identify and solve data issues, such as data drifts and poor quality, so you can stop their propagation in data applications, pipelines, and analytics. You'll learn ways to introduce data observability, including setting up a framework for generating and collecting all the information you need.

  • Learn the core principles and benefits of data observability
  • Use data observability to detect, troubleshoot, and prevent data issues
  • Follow the book's recipes to implement observability in your data projects
  • Use data observability to create a trustworthy communication framework with data consumers
  • Learn how to educate your peers about the benefits of data observability
About the Author

Andy Petrella has been in the data industry for almost 20 years, starting his career as a software engineer and data miner in the GIS space. He has evangelized big data for more than a decade, especially Apache Spark for which he created the Spark-Notebook (that has 3100 stars on Github). During his time evangelizing Spark and helping hundreds of companies in the US and in EU work on their data pipelines and models, he has witnessed the lack of visibility and control of data jobs after they are deployed in production. Since 2015, he has been talking to tech and data-savvy people to build a sustainable solution for this problem. See more
Current price €62.69
Original price €65.99
Save 5%
A01=Andy PetrellaAge Group_UncategorizedAuthor_Andy Petrellaautomatic-updateCategory1=Non-FictionCategory=UGKCOP=United StatesDelivery_Delivery within 10-20 working daysLanguage_EnglishPA=AvailablePrice_€50 to €100PS=Activesoftlaunch
Delivery/Collection within 10-20 working days
Product Details
  • Dimensions: 178 x 233mm
  • Publication Date: 25 Aug 2023
  • Publisher: O'Reilly Media
  • Publication City/Country: United States
  • Language: English
  • ISBN13: 9781098133290

About Andy Petrella

Andy Petrella has been in the data industry for almost 20 years starting his career as a software engineer and data miner in the GIS space. He has evangelized big data for more than a decade especially Apache Spark for which he created the Spark-Notebook (that has 3100 stars on Github). During his time evangelizing Spark and helping hundreds of companies in the US and in EU work on their data pipelines and models he has witnessed the lack of visibility and control of data jobs after they are deployed in production. Since 2015 he has been talking to tech and data-savvy people to build a sustainable solution for this problem. That is: how to make data observableA in a way that can be adopted smoothly by any data practitioner. Today he is regularly invited to companies to educate their data teams whilst running Kensu which has more than 50 years of total development time dedicated to building the set tools to help data engineers and their peers to build trust in what they deliver. Also he is in ongoing talks with advocates such as Gartner to create a definition of Data Observability that refers to all its important facets. Finally he has written books blogs slides training materials etc. since 2013 including many materials with O'Reilly.

Customer Reviews

Be the first to write a review
0%
(0)
0%
(0)
0%
(0)
0%
(0)
0%
(0)
We use cookies to ensure that we give you the best experience on our website. If you continue we'll assume that you are understand this. Learn more
Accept